Reliable and Resilient Switches

What is the situation?

Switch failures can create major safety risks and generate huge annual costs. Switch and Points Operating Equipment (POE) systems represent one of the most safety critical aspects of our infrastructure. Failures often expose workers to hazardous live railway environments or risks managed with safeguards such as caution speeds and driver observations.

Switch failures are a contributor to poor network performance. Switches and POE that wear rapidly or enter a deteriorated state must be maintained and replaced more frequently. This increases the whole life cost of the asset, making the challenge of improving and increasing infrastructure capacity more complicated.

Track access to carry out essential works is a premium commodity and the need for switches and POE to operate safely and reliably with less hands-on maintenance is greater than ever before.

Analysis of causes

Design
- Power / efficiency of POE
- Sub-optimal flexure
- Non-optimal geometry
- Rail profiles vertical / inclined rail
- Material / component type / specification
- Curvature / checking
- Poor welding / grinding
- Inconsistent gauging leading to poorly firmed interventions
- Knowledge of appropriate limits

Support Conditions
- Soft height
- Uneven settlement
- Accelerated ballast attrition
- Insufficient support stiffness
- Low POE headroom
- Incorrect sliding friction - Over / Under
- Incorrect rail friction - (running surface)

Operation
- Poor switch performance leading to:
 - Switch replacement
 - POE failures
- Poor drainage
- Inconsistent setup
- Poorly setup primary drive
- Poorly setup supplementary drive
- Handling & lifting
- Environmental effects (thermal, precipitation & contamination)

Geometric & Setup
- Incorrect sliding friction
- Geometry / maltadjustment
- Inconsistent setup
- Poor switch roller setup
- Poor drainage
- Poorly setup primary drive
- Poorly setup supplementary drive

External Factors
- Inconsistent gauging leading to poorly firmed interventions
- Knowledge of appropriate limits

Maintenance, Inspection & Repairs
- Inconsistent setup
- Poor drainage
- Poorly setup primary drive
- Poorly setup supplementary drive
- Handling & lifting
- Environmental effects (thermal, precipitation & contamination)

Priority problems

Specific priority problems
- Unreliable switches and POE systems.
- Poor control of alignment/ geometry/maladjustment.
- Lack of access for maintenance with increased capacity (i.e. Digital railway).
- Information management for S&C - myriad of analysis/data systems.
- Lack of resilience in modular S&C.
- Inadequate training and competency.
- Complexity & human factors.

Related goals
- Build in resilience to temperature and environmental variations.
- Self-adjusting S&C - Automated inspection.
- Link to self-adjusting: Higher MTBSAF.
- Align with a joined up asset management approach.
- Develop alternative bearer tie systems.
- Improve access to training resource & asset knowledge: Information Hub.
- Simpler design, less hands-on maintenance/installation.

Benefits
- Consistent performance of assets, year round.
- Performance, safety and cost reduction (fewer boots on ballot).
- Realisation of increased capacity.
- Greater knowledge of asset condition and life leading to better maintenance/renewals plans.
- More (and more reliable) modular S&C, driving down cost of renewals.
- Greater trackside.
- Reduces strain on competence development - human errors are difficult to predict.

To address these challenges it is expected that R&D actions will need to address the following aspects:

- How can alternative materials or coatings be utilised to enhance the performance of switches? Improvements will prolong life, reduce whole-life cost and reliance on maintenance. Weld repair processes should be considered for any alternatives.
- Optimise switch-profile and geometry to minimise wear/damage whilst reducing derailment risk. Consideration of manufacturing methods should be given.
- How can improved inspection methods, both automated and manual, help predictive maintenance whilst furthering our understanding of precursors to switch wear/damage?
- Improved understanding of the principles behind UIC716R and how it can be applied to UK switch designs.
- A fundamental understanding of switch design, flexure and drive forces is key to optimising point operating equipment and supplementary drives.
- What improvements to wheel/rail and slide plate friction management can be made? Considerations should be given to new plate materials, coatings, lubricants and roller technologies.
- How can alternative and innovative actuation, locking and detection systems improve reliability, reduce whole life cost and result in a reduction in maintenance?
- How can enhancements to existing actuation, locking and detection technologies improve reliability, reduce whole life cost and result in reductions in maintenance?
- What improvements can be made to monitoring and maintenance of switches including Remote Condition Monitoring (RCM)? How can we use existing data to improve understanding of failures?