

Updating the horizontal VUC:

Progress update

Mark Burstow Principal Vehicle Track Dynamics Specialist September 2012

Horizontal VUC update

Scope of review

- 1. Converting damage to cost
 - Can better relationships between damage and maintenance requirements be developed whilst maintaining an acceptable level of simplicity/transparency?
- 2. Friction coefficients
 - Evaluate the effect of changing the flange (lubricated) friction coefficients to values which we believe better describe the conditions for lubricated rail
- 3. Track alignment
 - Evaluate the effect of introducing 'real' track misalignment features into the curving simulations
- 4. Wheel profiles
 - Wear/RCF damage depends on wheel wear (mileage). Allow use of alternative wheel profiles

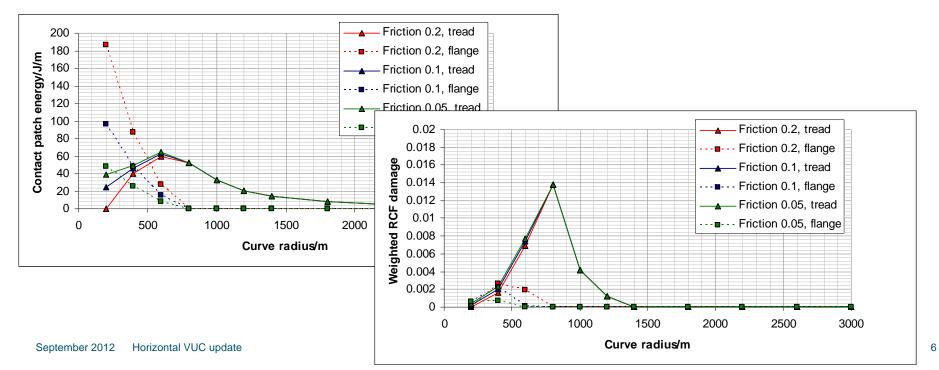
NetworkRail

1. Converting damage to cost

From "Methodolo	Calculate Variable Usage Charges for Control Period 4		HCI	Methodology to Calculate Variable Usage Charges	for Control Period 4	
variable usage charges for Control		or <i>Tγ</i> ≤ 15 N	(B8a)	Substituting 175 N:	Equations B11, B12 and B14 into Equation B6 gi	ves $15 \le T\gamma \le$
Period 4" UK NR	$\rho(T_{\gamma}-15)$ for $T_{\gamma}>15$ N	(BSb)	Cost Axie RCFDamag		(B15)	
Tunna, R. Joy, X, Shu and B. Madrill,				DepthGroun GrindingCyc	d le × (<u>RCFDamage</u> + <u>WearDamage</u>) × <u>RenerwaiCa</u> Axie) × <u>SideLossLi</u> r	nit
TTCI	WearDamage	$\frac{WearDamage}{Axie} = 0 \text{ for } T\gamma \leq 65 \text{ N}$			for $15 < T\gamma \le 175$ N Equation B16:	
	$\frac{WearDamage}{Axie} = WearDamageRate(T_Y - 65) \text{ for } T_Y > 651$		(B9b)	Cost - RCFDamage × GrindingCost + DepthGround GrindingCycle × (RCFDamage + WearDamage) × RenewalCost GrindingCycle × (RCFDamage + WearDamage) × SideLossLimit		(B16)
	At $T\gamma = 175$ N the crack and we	5.	For $T\gamma \ge 175$	N:		
	WearDamageRate $=\frac{160}{110} \times CrackDamageRate$		(B10)		$\frac{DepthWorn}{Axie} = k \times \frac{WearDamage}{Axie}$ (B17) At Ty = 175 N the depth worn per axle from Equations B14 and B17 should be the same. Thus:	
	Now, the amount of material los sum of the depth ground and the depth	ich aide is the				
	<u>SideLoss</u> <u>DepthGrout</u> <u>Axie</u> <u>Axie</u>	nd + <mark>DepthWorn</mark> Axle	(B11)		$k = \frac{DepthGround}{GrindingCycle}$	(B18)
	For $15 < T\gamma \le 175$ N: DepthWo	iround gCycle × GrindingCycles gCycle × Axie iround × <u>RCFDamage</u> gCycle Axie	(B12)	Substituting Equations B11, B17 and B18 into Equation B6 gives for $T_7 \ge 175$ N:		
				<u>Cost</u> Axie	t	r (B19)
		orn WearDamage und RCFDamage	(B13)	-	for $T\gamma \ge 175$ N Equation B20:	
				Cost	- DepthGround GrindingCycle × WearDamage × RenewalCost SideLossLimit	(B20)
				damage in terms of	tations have been derived that gives the cost of rail known variables and the wear index (T) generates	
	DepthWorn WearDan Axie RCFDan 		(B14)	Table B1 lists assum	ned values for the variables in Equation B15.	
	Prepared by TTCI(UK) Ltd.	27 March 2008 +	Page 69	Prepared by TTCI	(UK) Ltd. + 27 March 2008 +	Page 70

1. Converting damage to cost

- Existing methodology
 - Includes costs for rail grinding and rail renewal
 - Calculates RCF and wear damage for each vehicle
 - RCF is assumed to trigger grinding
 - Wear is assumed to trigger rail renewal (grinding is also assumed to add to wear)
- But
 - Grinding does not completely control RCF: we undertake renewals because of RCF
 - And, grinding is planned to be undertaken on a tonnage basis (15MGT on curves), not necessarily as a direct result of RCF

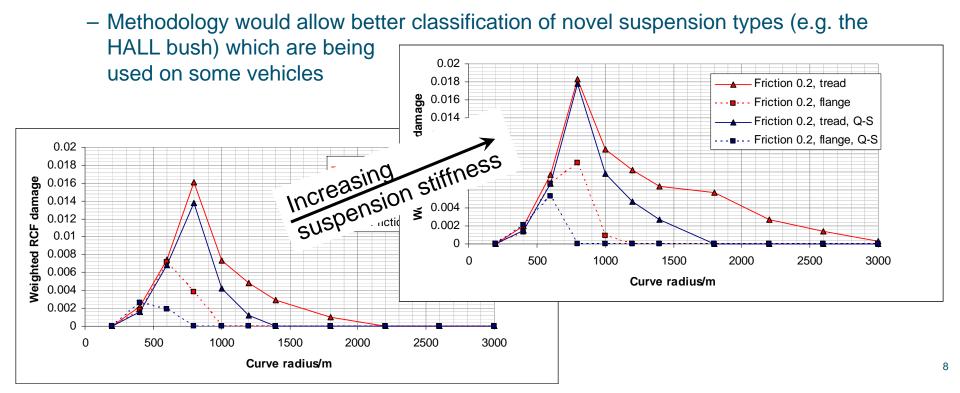

1. Converting damage to cost

- So....we have started reformulating the equations to
 - Still have grinding related to RCF
 - But also include a relationship with axleload since tonnage also drives grinding
 - Include rail renewal triggered by RCF
 - The total RCF before renewal is much higher than for grinding, so the contribution of each vehicle to rail renewal is lower than for grinding
 - Wear contribution stays largely the same
 - Wear limit is the same, and grinding adds a small amount to the total wear

2. Friction coefficients

- Review of simulations with lower flange friction
 - For many vehicles this has a relatively small impact
 - the curves where varying friction changes the balance of forces have a small weighting in the damage calculation because there are not many of them on the network

NetworkRail


3. Track alignment

- Simulations using a sample ('good') track quality alignment
 - The same track file used for all analysis
 - Ensures that both the static and dynamic performance of the vehicle suspension is tested
 - RCF damage evaluated from forces determined as the mean + 1SD value to include some dynamic effect in the evaluation

3. Track alignment

- Observations
 - Track damage is distributed onto shallower radius curves: which we know do experience RCF
 - Vehicles with stiffer yaw suspensions predicted to cause proportionally more damage on shallower curves: as observed

NetworkRail

- Hundreds of vehicle dynamics simulations have been run
 - And many are still to run!
- Progress is running to plan
- Track cost equations being reformulated to include RCF as a cause for renewal and not just grinding
- Friction coefficient updates will have a small effect on charges
- Proposed changes to account for vehicle dynamics due to track geometry variations: better representation of the range/types of RCF