

Contents

VERSION CONTROL	4	2.2 Extent of network	18
		2.2.1 Limits	18
CHAPTER 1 - GENERAL INFORMATION	5	2.2.2 Connecting Railway Networks	18
		2.3 Network Description	20
1.1 Introduction	5	2.3.1 Track typologies	20
		2.3.2 Track gauges	20
1.2 Purpose of the Network Statement	8	2.3.3 Stations and nodes	20
		2.3.4 Loading Gauge	21
1.3 Legal Aspects	9	2.3.5 Axle Weight Limits	23
1.3.1 Legal Framework	9	2.3.6 Line Gradients	26
1.3.2 Legal status and liability	11	2.3.7 Maximum Line Speed	26
1.3.3 Appeals procedure	12	2.3.8 Maximum Train Lengths	26
4/6	42	2.3.9 Power Supply	27
1.4 Structure of the Network Statement	12	2.3.10 Signalling Systems	27
1.5 Validity Period, Updating and Publishing	13	2.3.11 Traffic Control Systems.	29
1.5.1 Validity Period	13	2.3.12 Communication Systems	30
1.5.2 Updating	13	2.3.13 Train Control Systems	31
1.5.2 Opuating 1.5.3 Publishing	13		
1.5.5 Publishing	15	2.4 Traffic restrictions	32
1.6 Contacts	13	2.4.1 Specialised Infrastructure	32
1.0 Contacts		2.4.2 Environmental restrictions	32
1.7 Cooperation Between European Infrastructure Managers/Alloca	tion	2.4.3 Dangerous Goods	33
Bodies	16	2.4.4 Tunnel restrictions	33
1.7.1 Rail Freight Corridors	16	2.4.5 Bridge restrictions	33
1.7.2 RailNetEurope and Other International Cooperation	16		
		2.5 Availability of the infrastructure	33
CHAPTER 2 – INFRASTRUCTURE	17	2.6 Infrastructure development	34
2.1 Introduction	17	CHAPTER 3 - ACCESS CONDITIONS	35

3.1 Introduction	35	4.5.4 Coordination Process	51
		4.5.5 Dispute Resolution Process	53
3.2 General Access Requirements	35		
3.2.1 Conditions for Applying for Capacity	39	4.6 Congested Infrastructure	54
3.2.2 Conditions for Access to the Railway Infrastructure	39		
3.2.3 Licences	39	4.7 Exceptional Transports and Dangerous Goods	57
3.2.4 Safety Certificate	40	A O D L A St. D th All to	
3.2.5 Insurance	40	4.8 Rules After Path Allocation	57
		4.8.1 Rules for Path Modification by the applicant	57
3.3 Contractual Arrangements	41	4.8.2 Rules for Path Alteration by the IM	57
3.3.1 Framework Agreement	41	4.8.3 Non-Usage Rules by the applicant	57
3.3.2 Contracts with RUs	41	4.8.4 Rules for Cancellation by the applicant	57
3.3.3 Contracts with non-RU applicants	42		
2/6 /6 / 5		CHAPTER 5 - SERVICES AND CHARGES	58
3.4 Specific Access Requirements	42		
3.4.1 Rolling Stock Introduction, Modification and Cascade	42	5.1 Introduction	58
3.4.2 Staff Acceptance	44		
3.4.3 Exceptional Transport	44	5.2 Charging Principles	58
3.4.4 Dangerous Goods	45		
3.4.5 Test Trains and Other Special Trains	46	5.3 Minimum Access Package and Charges	58
CHAPTER 4 – CAPACITY ALLOCATION	47	5.4 Additional Services and Charges	69
4.1 Introduction	47	5.5 Ancillary Services and Charges	69
		5.6 Financial Penalties and Incentives	70
4.2 General Description of the Process	47	5.6.1 Penalties for Path Modification	70
4.3 Reserving Capacity for Temporary Capacity Restrictions4.3.1 General Principles	47	5.6.2 Penalties for Path Alteration	70
4.3.2 Deadlines and Information Provided to Applicants	47	5.6.3 Penalties for Non-Usage	70
		5.6.4 Penalties for Path Cancellation	70
4.4 Impacts of Framework Agreements	49	5.6.5 Incentives/Discounts	70
4.5 Path Allocation Process	49	E. 7. Danifarma ma a Calcuma	74
4.5.1 Annual Timetable Path Requests	49	5.7 Performance Scheme	71
4.5.2 Late Annual Timetable Path Requests	51	E 9 Changes to Charges	72
4.5.3 Ad-Hoc Path Requests	51	5.8 Changes to Charges	12

5.9 Billing Arrangements	72	7.3.2 Passenger Stations	77
		7.3.2.1 General Information	77
CHAPTER 6 – OPERATIONS	73	7.3.2.2 Services	77
CHAPTER 0 - OF ERATIONS	75	7.3.2.3 Service Facility Description	78
6.1 Introduction	73	7.3.2.4 Charges	78
0.1 Introduction	75	7.3.2.5 Access Conditions	78
6.2 Operational Rules	73	7.3.2.6 Capacity Allocation	78
	, ,	7.3.3 Freight Terminals	78
6.3 Operational Measures	74	7.3.4 Marshalling Yards and Train Formation Facilities, including Shunting Facilities	5 78
6.3.1 Principles	74	7.3.5 Storage Sidings	78
6.3.2 Operational Regulation	74	7.3.6 Maintenance Facilities	79
6.3.3 Disturbances	74	7.3.7 Other Technical Facilities, including Cleaning and Washing Facilities	79
		7.3.8 Maritime and Inland Port Facilities	80
6.4 Tools for Train Information and Monitoring	75	7.3.9 Relief Facilities	81
		7.3.10 Refuelling Facilities	81
CHAPTER 7 – SERVICE FACILITIES	77		
CHAITER / - SERVICE FACILITIES	,,	GLOSSARY	82
7.1 Introduction	77		
7.1 Introduction	, ,	Annex 1 – Extent of Electrification across the Network	89
7.2 Service Facility Overview	77		
		Annex 2 - Schedule of timetabling process	90
7.3 Service Facilities Managed by the Infrastructure Manager	77	••	
7.3.1 Common provisions	77	Annex 3 - Route Capability Gradients	93

Version Control

Version	Dαte	Description of Change
1.0	15.08.2025	Consultation Document
2.0	06.11.2025	Publication Document

Chapter 1 - General Information

1.1 Introduction

Network Rail Infrastructure Limited (Network Rail) owns, operates, maintains and develops the main rail network in Great Britain (GB). This includes the railway tracks, signalling and electrification systems, bridges, tunnels, level crossings and viaducts.

The Network Statement is produced in accordance with The Railways (Access, Management and Licensing of Railway Undertakings) Regulations 2016 (as amended by the Railways (Access, Management, and Licensing of Railway Undertakings) (Amendments etc.) (EU Exit) Regulations 2019 and by the Railways (Safety, Access, Management, and Interoperability) (Miscellaneous Amendments and Transitional Provision) (EU Exit) Regulations 2019 (referred to in this Network Statement as "The Access, Management and Licensing Regulations.") Network Rail is an executive non-departmental public body sponsored by the Department for Transport. Our <u>framework agreement</u> with the Department for Transport sets out arrangements for corporate governance and financial management.

On 5 November 2025, the Secretary of State for Transport formally introduced the Railways Bill to Parliament, marking a pivotal moment in the Government's rail reform agenda. The Bill is a significant legislative step towards the creation of Great British Railways (GBR), a new public body that will integrate track and train operations under a single directing mind. This reform aims to simplify the railway system, enhance accountability, and place a focus on passengers and; freight users and at the heart of decision-making.

The Passenger Railway Services (Public Ownership) Act, which received Royal Assent in November 2024, allows the government to bring private

sector passenger train operators into public ownership, ahead of GBR being established as operator contracts expire. Furthermore, ahead of the creation of GBR, the Secretary of State for Transport has established Shadow GBR, led by an independent chair and the leaders of three key industry organisations (DfT's Rail Services Group Network Rail and DfT Operator Ltd) to mobilise Shadow GBR. Shadow GBR signals a new way of working together - using the leadership, power and resources of the three organisations to further improve services for passengers and freight users ahead of GBR, with an immediate focus on improving train performance.

Until the Railway Bill has received Royal Assent (which would likely have a material impact on some aspects of this Network Statement) the arrangements set out in this Network Statement will continue to apply.

Operating Model

Network Rail is divided into five devolved regions: Eastern, North West & Central, Scotland's Railway, Southern, and Wales and Western, each led by a managing director. These regions set their own regional strategy (within the wider network-wide strategy) and support 14 routes who are responsible for day-to-day delivery of performance, operations, maintenance, renewals and enhancements within their geography.

The regions are supported by our network wide functions: System Operator, Technical Authority, Route Services Directorate, Human Resources, Chief Finance Officer Directorate and Communications.

Route Services and System Operator work with the regions and routes to define and deliver operational and technical services that meet their needs and help improve operational performance and customer satisfaction. Technical Authority provides technical leadership and specialist expertise for safety, engineering, asset management, security, environment, and sustainability.

Network Rail Regions and Routes

- Eastern
- 1) Anglia Route
- 2 East Coast Route
- (3) East Midlands Route
- 4 North & East Route
- North West and Central
- (5) Central Route
- (6) North West Route
- (7) West Coast South Route
- Scotland's Railway
- (8) Scotland Route
- Southern
- 9 Kent Route
- 10 Network Rail High Speed
- (11) Sussex Route
- (12) Wessex Route
- Wales & Western
- (13) Wales & Borders Route
- (14) Western Route

The Office of Rail and Road

Network Rail's board of directors is responsible to the Secretary of State for Transport, and the chair aims to ensure our policies and actions support the wider strategic policies of the Secretary of State and Scottish Ministers.

We are subject to independent regulation by the Office of Rail and Road (ORR), the rail regulator in Great Britain, for compliance with regulatory obligations, including those under our <u>network licence</u> and <u>station licence</u>. These authorise us to operate the main rail network and managed stations (as listed in the station licence schedule).

ORR is the railway industry's economic and safety regulator and is independent of government, but accountable to parliament. While ORR's role in respect of access is expected to change as part of Rail Reform, under <u>current legislation</u>, any railway undertaking (RU) wanting to operate trains on the network must, among other things, have a track access contract with us which has been approved by ORR. RUs may apply directly to ORR for access to the network in circumstances where, for whatever reason, an agreement is not reached as regards the terms of access. RUs may also be required to enter into station and depot access agreements. The access arrangements are explained in more detail in Section 2.

The 2023 Periodic Review (PR23) established our funding and what we must deliver in Control Period 7 (CP7), which started on 1 April 2024 and will end on 31 March 2029. Our CP7 delivery plan sets out our planned activities, outputs and costs of operating, maintaining and renewing the mainline railway infrastructure in Great Britain over the next five years.

We work closely with other industry stakeholders that include the passenger and freight RUs using the network, the <u>Department for Transport</u> (DfT), Merseytravel, <u>Transport for Greater Manchester</u>,

<u>Transport for London (TFL), Transport for Wales (TfW)</u> and <u>Transport Scotland (TS)</u>, all of whom specify and fund various rail services, and the <u>Rail Delivery Group (RDG)</u>.

1.2 Purpose of the Network Statement

The Network Statement's objective is to inform applicants, and other interested parties about our infrastructure, and the terms and conditions for allocation of capacity and use.

The Network Statement presents the services that we offer, with information regarding where they are accessible, how the allocation of services functions, which charges apply, and the conditions that apply for gaining access to the services.

By publishing this information in the form of a Network Statement we aim to make it available to all current and potential RUs in a fair and non-discriminatory manner.

Whilst primarily concerned with information relating to the main rail network, the objective of the Network Statement also extends to the provision of further information regarding railway facilities that link to our network. The extent of this information is subject to the level of detail supplied to us by the relevant facility owners and operators when requested. In the cases where we are not responsible for the management of certain service facilities, the related information contained in this Network Statement is not binding.

We are a member of <u>RailNetEurope</u> (<u>RNE</u>), which encourages its members to adopt a common document structure for their respective Network Statements so as to provide standards of user-friendliness and customer orientation, and to assist those who need to consult more than one statement for their intended operations. Where appropriate to do so, the document structure suggested by RNE has been followed in preparing this Network Statement.

1.3 Legal Aspects

1.3.1 Legal Framework

The legal framework of the GB rail industry is primarily governed by the Railways Acts 1993 and 2005, the Railways and Transport Safety Act 2003, and a range of secondary legislation including the Railways (Access, Management and Licensing of Railway Undertakings) Regulations 2016 (as amended) and the Health and Safety at Work Act 1974. We expect that once the Railways Bill and associated secondary legislation is enacted in due course then there will be significant legislative change to support the reform of the railways, however until such time the current legislation remains in force.

The 2016 Regulations were amended by The Railways (Access, Management and Licensing of Railway Undertakings) (Amendments etc.) (EU Exit) Regulations 2019 (SI 2019/518) and by The Railways (Safety, Access, Management and Interoperability) (Miscellaneous Amendments and Transitional Provision (EU Exit) Regulations 2019 (SI 2019/1310). Regulation 13 of the 2016 Regulations sets out the requirements in relation to developing and publishing a Network Statement.

Provisions relating to the calculation of the cost that is incurred as a result of operating a train service are set out in <u>Regulation 2015/909</u>.

The Retained EU Law (Revocation and Reform) Act 2023 includes provisions for the Secretary of State to revoke implementing regulations, as exercised by the Railways (Revocation and Consequential Provision) Regulations 2024/127. Regulation 2024/127 amended the Railways and Other Guided Transport Systems (Safety) Regulations 2006, the Railways

(Access, Management and Licensing of Railway Undertakings Regulations 2016 and revoked 11 items of EU legislation.

In respect of (1) above a French language version of the Network Statement can be found on our website.

The safety framework of the GB rail industry is primarily governed by The Railways and Other Guided Transport Systems (Safety) 2006 (as amended) knowns as ROGS. ORR has published guidance on ROGS on its website which provides an overview of the regulatory requirements for managing safety on the railways, tramways and other guided transport systems.

The regulations require the Infrastructure Manager and most RUs to maintain a Safety Management System (SMS) and hold a safety certificate or authorisation indicating the SMS has been accepted by ORR. The regulations also put in place a duty of co-operation across all RUs and IMs; arrangements are in place to co-operate with other transport operators in the shared management of system safety. This includes both advising RUs and other IMs of proposed infrastructure changes which might affect the safety of their operation and responding to consultation requests from third parties concerning their proposed changes.

ROGS has been amended by <u>The Railways and Other Guided Transport Systems (Safety)</u> (Amendment) Regulations 2011₁ and The Rail Safety (Amendment etc.) (EU Exit) Regulations 2019. As an IM, we maintain and develop the infrastructure and have arrangements in place to verify the safety of new or changed infrastructure before it is placed in service as set out in our <u>Health and Safety Management System</u>.

¹ The assessment is to establish that the SMS meets the requirements of the ROGS and the provisions adopted by an applicant must meet the requirements that are necessary for a safe operation.

Interoperability Legislation

The aim of rail technical interoperability legislation is to create a rail system that allows the safe and uninterrupted movement of trains which accomplish the required level of performance through the harmonising of technical interfaces and specifications throughout the EU. The Interoperability framework of the GB rail industry is primarily governed by The Railways (Interoperability) Regulations 2011, as amended by The Railways (Interoperability) (Amendment) Regulations 2013, 2014 and also The Railway (Interoperability) (Miscellaneous Amendments and Revocations) (EU Exit) Regulations 2020. Further information on interoperability legislation is available from the Department for Transport website and ORR website.

National Technical Specification Notice (NTSN)

Prior to the UK leaving the EU, the industry used the TSI's (Technical Specifications for Interoperability) - these no longer apply in the UK and have been replaced by a suite of mandatory NTSNs that are managed by the Rail Safety and Standards Board ("RSSB"). Initially aligned to the TSIs, these define the technical specifications required to underpin those essential requirements and harmonise the technical and operational characteristics of the rail network.

The NTSNs apply to various structural and functional sub-systems, some of which are referred to as 'transversal', covering more than one sub-system.

Our adoption of the NTSNs is a key element of compliance with the Railways (Interoperability) Regulations 2011 as amended. In order to underpin this importance, several initiatives have been put in place so that the Interoperability Regulations and NTSNs are applied in a consistent way to relevant projects.

The Railways (Interoperability) Regulations 2011 as amended mandate that the Infrastructure Owner must have the ability to produce an export of its infrastructure data, meeting the <u>Register of Infrastructure</u> data specification within 28 days of a request by an applicant for authorisation or an approved body.

Data meeting the RINF data specification can be used for consideration at the design processes for rolling stock sub systems, enabling technical compatibility assessment for fixed installations, monitoring interoperability status of the UK railway network and assessing route compatibility for planned trains. It provides an overview of general compatibility, though the RU, Vehicle Manufacturer or other authorised users will need to undertake more detailed assessments prior to a vehicle being cleared to operate on a new route.

For more information about the RINF, please contact:

Asset Information Services
Network Rail
The Quadrant:MK
Milton Keynes, MK9 1EN
Email: RINFdataenquireies@networkrail.co.uk
A summary of the NTSNs:

Control, Command and Signalling (CCS) NTSN relates to the train control and train protection systems. The target technology of this NTSN is European Rail Traffic Management System (ERTMS) but there is also an implication for the existing 'Class B' systems. <u>Section 2.3</u> outlines the ERTMS and Class B systems currently in use on the network.

Energy (ENE) NTSN relates to the power supply and contact systems for providing energy to trains. The target technology for this NTSN is 25kV AC OLE systems but the NTSN makes provision for the 750V DC third rail

contact system adopted in parts of the UK. <u>Section 2.3</u> provides an overview of the electrification systems currently in use on the network.

Infrastructure (INF) NTSN defines the characteristics relating to gauge clearance, including the clearance between trains and platforms in stations, and of the distances provided between adjacent tracks and technical requirements for track components.

Safety in Railway Tunnels (SRT) and Persons with Reduced Mobility (PRM) NTSNs relate to the safety characteristics of tunnels and the provision of facilities at stations and on trains to enable accessibility for mobility-impaired persons respectively.

NTSNs, Rolling Stock Freight Wagons (WAG) NTSN and Rolling Stock Locomotives and Passenger Carriages (LOC & PAS) NTSNs have less significance to the infrastructure and railways systems work we undertake, but there are some aspects of interfaces, particularly under the LOC & PAS NTSN, of which we must be mindful.

The **Operations and Traffic Management (OPE) NTSN** is being considered in the development of our Traffic Management system.

Telematic Application for Freight and Passengers

Telematics are the technologies used to transmit information over long distances. In rail, telematic systems are used to track freight and passenger services.

Telematics Applications for Freight (TAF) NTSN arises from Commission Regulation (EU) 1305/2014 as amended by Commission Implementing Regulations (EU) 2018/278 and (EU) 2019/778. The regulation repeals Commission Regulation (EC) 62/2006, amended by Regulation (EC) 280/2013.

The purpose of TAF NTSN is to keep track of consignments and to determine when deliveries to customers will be made. This is achieved

through messages passed between IMs and RUs that convey the status of trains at all stages from path request through to actual train running.

Telematics Applications for Passenger (TAP) NTSN is mandated under EU Regulation 454/2011, as amended by

- Commission Regulation (EU) 665/2012;
- Commission Regulation (EU) 1273/2013;
- Commission Regulation (EU) 2016/527; and most recently,
- Commission Implementing Regulations (EU) 2019/775.

The aim is to facilitate free passenger movement through the exchange of timetable and ticketing information between EU rail companies and ticket vendors. The provision of customer information during journeys is also a part of TAP NTSN.

Further information about the TAF TAP NTSNs can be found on our website.

1.3.2 Legal status and liability

The provision of a Network Statement fulfils a legal requirement and is intended as a source of information for current and potential customers. It has no contractual force. However, where a RU enters into a track access contract with us, the track access contract will give contractual force to documents such as the Network Code, Engineering Access Statement and Timetable Planning Rules which are referenced within this Network Statement.

The Network Statement has been prepared for the benefit of existing and potential customers, to comply with the requirements of the Access, Management and Licensing Regulations. It is intended to be informative, but customers (both existing and potential) should not place reliance on any item of information contained in it without first verifying with us the extent to which it is appropriate to do so.

We cannot accept responsibility for the content of any external websites referred to within, or for any discrepancies in the translation of, this Network Statement.

1.3.3 Appeals procedure

The Network Statement refers to various documents which carry their own appeal procedures. The Network Code is a set of rules codifying rail industry procedures in relation to the operation of the main rail network. It is incorporated in, and so forms part of, the track access contracts by which RUs are granted permission to use the network (access rights). RUs have a right to challenge decisions made in relation to functions under Part D of the Network Code for timetabling, Part D for use of access rights, the Engineering Access Statement and the Timetable Planning Rules. Such challenges are heard by the relevant panel established under the Access Dispute Resolution Rules, which are appended to the Network Code; with a subsequent right of appeal to ORR should this be necessary. Further information on the Network Code can be found at Section 3.1.

The Access, Management and Licensing Regulations also provide applicants with rights of appeal. These appeal rights apply if the applicant considers that it has been unfairly treated, discriminated against, or is in any other way aggrieved concerning the matters outlined in Regulation 32(2). They can apply to a decision by the IM, a terminal or port owner, a service provider, or a RU. Guidance on how to appeal is included within Chapter 5 of The Railways (Access, Management and Licensing of Railway Undertakings) Regulations 2016, as amended - Access to the rail network and service facilities, infrastructure management and appeals (orr.gov.uk)

The right of appeal is to ORR, which has published guidance on its approach in considering such <u>appeals</u>. Where the subject matter of an appeal is such that it could have been dealt with through directions by

ORR under the <u>Railways Act 1993</u>, then that will be deemed the appropriate procedure. In other cases, ORR would generally expect to adopt a similar approach as the Railways Act procedure.

If an applicant for allocation of infrastructure capacity is aggrieved regarding decisions concerning the Network Statement, including the information that has been (or in an applicant's view should have been) included in it, there is a right of appeal to ORR. We invite anyone who has concerns regarding this Network Statement to raise them with us in the first instance, in order that we may consider how those concerns may be accommodated.

Please contact networkstatement@networkrail.co.uk to do this.

1.4 Structure of the Network Statement

The structure of this Network Statement follows the 'Network Statement Common Structure and Implementation Guide', adopted by European Infrastructure Managers that are members of RailNetEurope (see Section 1.7.2), on the basis of the applicable legal framework. The document is revised annually, and the most recent version is available on the website. The goal of this Common Structure is that all applicants and interested parties can find the same information at the same place in the Network Statements of other countries.

The Network Statement is thus structured in seven chapters constituting the main document and appendixes giving further details:

- Chapter 1 General Information gives general information about the Network Statement and contacts
- Chapter 2 Infrastructure describes the main technical and functional characteristics of the railway network
- Chapter 3 Access Conditions describes access conditions

- Chapter 4 Capacity Allocation sets out the procedure for the allocation of the train paths
- Chapter 5 Services and Charges refers to the charging of the provided services as well as incentive schemes
- Chapter 6 Operations describes the traffic management procedures including the procedures to be followed in the event of incidents
- Chapter 7 Service Facilities provides an overview of the service facilities connected to the Infrastructure Manager's network.

1.5 Validity Period, Updating and Publishing

1.5.1 Validity Period

The Access, Management and Licensing Regulations require us as an IM to publish a Network Statement four months before the deadline for applications for infrastructure capacity (the Priority Date for the relevant timetable). Consequently, in the context of the GB allocation process, this document, the 2027 Network Statement is for use for capacity requests for the 2027 timetable year (13 December 2026 – 11 December 2027).

We expect to publish the 2028 Network Statement, valid for capacity requests for the 2028 timetable, in November 2026.

1.5.2 Updating

The Network Statement will be updated on our website as it may be necessary to include any additional information or reflect significant changes throughout the year. Where reasonable we will update the connected facilities details (see Section 5.2) as information is supplied to us from the relevant facility service providers. We will consult on an updated version of the Network Statement once a year, usually between July and October. It should be noted that once the Network Statement

has been downloaded (<u>see Section 1.5.3</u>), it will fall outside any change control process.

Many of the documents referenced by the Network Statement (such as the <u>Network Code</u>, <u>Engineering Access Statement</u> and <u>Timetable Planning Rules</u>) are subject to their own version control processes. The updated versions of these documents will be available through the weblinks we have provided within this document.

1.5.3 Publishing

The Network Statement facilitates access to further information by means of web-links or contact details, in addition to the information set out within it, therefore it is only published in an electronic format.

The Network Statement is written in English and published in both French and English on our website where it is available free of charge in electronic format. It will be kept up to date with any changes, and it will be made clear where updating has taken place (by way of version control).

We have taken care to make sure that both the English and French versions of the Network Statement are aligned, however, in the event of inconsistencies or interpretation difficulties between versions, the English version prevails.

For future versions of the <u>Network Statement</u>, we would be pleased to receive views on structure, content and presentation.

1.6 Contacts

The main points of contact for existing customers for regular business issues should continue to be the relevant Customer Relationship Executive in line with current arrangements.

For passenger track access for prospective non-franchised passenger RUs please contact:

Gianmaria Cutrupi, Customer Manager (Aspirant Open Access) Network Rail The Quadrant:MK Milton Keynes, MK19 1EN

Email: Gianmaria.Cutrupi@networkrail.co.uk

For new freight customers, please contact:

Guy Bates, Head of Business Development Network Rail, Waterloo General Offices London SE1 8SW

Email: guy.bates@networkrail.co.uk

Please note that operators of track-mounted plant machines (known colloquially as 'yellow plant'), who wish to gain access to the network in order to gain access to another party's adjoining network (for example, to transit from Network Rail infrastructure to London Underground Limited) in order to undertake engineering work that is not conducted on our behalf, need to follow the same procedures indicated in this Network Statement as would a freight customer in order to conduct such operations.

For queries about the Operational Planning Production Schedule (timetabling), please contact:

Matthew Allen, Head of Timetable Production

Network Rail

The Quadrant:MK

Milton Keynes MK9 1EN

Email: Matthew.ALLEN@networkrail.co.uk

For queries about the New Working Timetable and the Applicable Working Timetable please contact:

Working Timetable Team

Network Rail,

The Quadrant: MK

Milton Keynes MK9 1EN

Email: NRT-WTT@networkrail.co.uk

For queries about compatibility, please contact:

David Galloway

Network Technical Head System Compatibility & T&RS

Network Rail

The Quadrant:MK

Milton Keynes, MK9 1EN

Email: david.galloway@networkrail.co.uk

Other GB railway organisations

Access Disputes Committee Floor One, Mimet House

5a Praed Street

London

W2 1NJ

http://www.accessdisputesrail.org/

Department for Transport

Great Minster House 33 Horseferry Road

London

SW1P 4DR

http://www.dft.gov.uk/

Merseytravel

1 Mann Island Liverpool

Liverpoor

http://www.merseytravel.gov.uk

Office of Rail and Road

25 Cabot Square

London

E14 4QZhttps://orr.gov.uk/

Rail Delivery Group

1 Puddle Dock

London EC4V 3DS

http://www.raildeliverygroup.com/

Rail Safety and Standards Board

5th Floor

25 Fenchurch Avenue

London EC3M 5AD

http://www.rssb.co.uk/

Transport for Greater Manchester

2 Piccadilly Place

Manchester

M1 3BG

http://www.tfgm.com/

Transport for London

9th Floor, 5 Endeavour Square

London E20 1JN https://tfl.gov.uk

Transport for Wales

3 Llys Cadwyn

Pontypridd CF37 4TH

https://tfw.wales

Transport Scotland Buchanan House

58 Port Dundas Road

Glasgow G4 OHF

http://www.transportscotland.gov.uk/

Rail Freight Group

7 Bury Place

London

WC1A 2LA

http://www.rfg.org.uk/

HS1 Limited

5th Floor, Kings Place

90 York Way

London

N1 9AG

http://www.highspeed1.co.uk/

London St. Pancras Highspeed

Two Snowhill

Snow Hill Queensway

Birmingham

B4 6GA

http://www.hs2.org.uk/

1.7 Cooperation Between European Infrastructure Managers/Allocation Bodies

1.7.1 Rail Freight Corridors

In 2010 the European Parliament and the Council laid down rules for the establishment of a European rail network for competitive freight, consisting of international freight corridors.

The aim is to achieve reliable and good quality railway freight services to be able to compete with other modes of transport.

The main objective to initiate Regulation 913/2010/EU (hereinafter "the Regulation") was to improve the services provided by IMs to international freight operators.

Several initiatives have contributed to the creation of the corridors' concept: the 1st railway package; the TEN-T (Trans-European Transport Network) programme; cooperation among Member States (MS) and IMs within the framework of ERTMS; and the deployment of TAF NTSN (for Telematics Applications for Freight).

Through the Regulation the European Union would like to act in the following main areas corresponding to the process of harmonisation:

- improving coordination among IMs,
- improving the conditions of access to infrastructure,
- guaranteeing freight trains' adequate priority,
- and improving intermodally along the corridors.

To reach these goals, the European Union designated nine international rail freight corridors (RFC) in the EU rail network. Since leaving the European Union, Network Rail is no longer a formal member of a rail freight corridor, but continues to cooperate with neighbouring IMs to improve coordination of international freight services.

The detailed description of the Rail Freight Corridor to which we are linked via the Channel Tunnel, RFC North Sea-Mediterranean, can be found on the following website:

http://www.rfc-northsea-med.eu/en

1.7.2 RailNetEurope and Other International Cooperation

Network Rail is a member of RailNetEurope (RNE), which is an organisation of European railway Infrastructure Managers and Allocation Bodies (IMs/ABs) as well as rail freight corridors. RNE facilitates international railway business by developing harmonised international business processes in the form of templates, handbooks, and guidelines, as well as IT tools. You can find more information about RNE on http://www.rne.eu/organisation/rne-approach-structure/

Chapter 2 – Infrastructure

2.1 Introduction

Under the terms of our network licence, we are only funded to undertake activities designated as 'Permitted Business'. Permitted Business is defined within the network licence as 'Network Business' and 'Permitted Non-Network Business'. Permitted Non-Network Business is defined as any business other than the network business and the exploitation of land (which includes the disposal of land within the meaning of Licence Condition 17), of the type transferred to the licence holder pursuant to the Railtrack Transfer Scheme. Network Business is further defined as the business of providing and operating the licence holder's network, including the maintenance, renewal, replacement, improvement, enhancement, and development of the network; and any ancillary service related to the business.

To undertake network business a periodic review process is followed which determines the requirements that need to be delivered in a five-year period. The Control Period runs from 1 April 2024 to 31 March 2029.

We are responsible for maintaining and improving the railway infrastructure on the main line network, including:

- Bridges
- Drainage
- Earthworks
- Electrification systems (overhead line and conductor rail)
- Level crossings
- Signalling systems
- Track

- Tunnels
- Viaducts.

The successful delivery of our asset management responsibilities must be consistent with the reasonable requirements of stakeholders. Further information on asset management, including our asset management policy and strategy, can be accessed at:

https://www.networkrail.co.uk/running-the-railway/looking-after-the-railway/asset-management/

Further information

Detailed information and data about the infrastructure is contained in the Sectional Appendix, which is described in <u>Section 2.3</u>.

The Sectional Appendix contains detailed data about the infrastructure of the main rail network, comprising running lines (but not necessarily sidings) on a line of route basis, usually in diagrammatic or tabular form. There are several references to tables within the Sectional Appendix as sources of detailed information in the following section.

In addition, we have the ability to export infrastructure data in line with the Commission Implementing Regulation (EU) 2019/777.). The main purpose of RINF specified data is to provide transparency on the characteristics of the network. The information can be used for planning purposes in designing new trains and for assisting with the assessment of compatibility of trains with routes before the start of operation. See Section 3.4.1 for more information.

Data meeting the RINF specification can be considered for the design processes for rolling stock sub systems, enabling technical compatibility assessment for fixed installations, monitoring interoperability status of the UK railway network and assessing route compatibility for planned trains. It is intended to provide an overview of general compatibility,

though the RU, Vehicle Manufacturer or other authorised users will need to undertake more detailed assessments prior to a vehicle being cleared to operate on a new route.

For more information about the RINF, please contact:

Asset Information Services Network Rail The Quadrant:MK Elder Gate Milton Keynes MK9 1EN

Email: RINFdataenquiries@networkrail.co.uk

2.2 Extent of network

2.2.1 Limits

The Network Statement covers the entire railway infrastructure that we own and operate and is defined as the main rail network in Section 1.1. It also includes some information on connecting infrastructure such as freight sidings, depots and rail-connected ports. Broadly, we own and operate the mainline railway network in England, Scotland and Wales – with a small number of other Infrastructure Managers connected to the network. Our network is divided into five regions and 14 operating routes, as described in <u>Section 1.1</u>. The majority of this network is usually available for normal traffic operations, except during periods of maintenance and renewal (which are both covered by **Engineering** Access Statements described further in Section 4.3.2) and subject to the allocation of capacity for these purposes (as described in Section 4.3.2), though some minor lines may be deemed to be 'out of use' (including temporary situations) and may only be accessed by special arrangements. Some lines of the network are closed overnight due to limitations such as the overnight closure of their signal boxes. The

<u>Timetable Planning Rules</u> (which contain information on route opening hours in Section 2.2) are published on our website.

We are also the owner of rail infrastructure and assets on the Isle of Wight, but we have leased them to First MTR South Western Trains Limited (although the Island Line brand has been retained). We have leased the railway land, infrastructure and assets on the island for a cumulative period of 45 years, commencing 1 April 1994. This is a vertically-integrated railway: Island Line is responsible for all railway operations and maintenance of the infrastructure.

Further details regarding our individual routes are found on our website.

2.2.2 Connecting Railway Networks

Our infrastructure, the main rail network, is connected to the railway infrastructure owned and/or operated by other organisations including, but not limited to:

- London St.Pancras Highspeed the railway between St Pancras
 International in London and the Channel Tunnel which connects
 with the international high- speed routes to Paris, Brussels and
 Amsterdam. It should be noted that their Network Statement
 deals with this route and can be accessed at: https://stpancras-highspeed.com/our-company/regulatory/regulatory-docs/
- Eurotunnel at a boundary point between Dollands Moor and the UK portal of the Channel Tunnel. The Channel Tunnel constitutes the only fixed rail link between Great Britain and other European networks. Eurotunnel's Network Statement can be accessed at: https://www.getlinkgroup.com/en/our-group/eurotunnel-railwaynetwork/
- London Underground Limited, in relation to the London Underground system.

- Crossrail Central Operating Section, a largely tunnelled urban network that links our network in the east and west via central London. Its Network Statement can be accessed at: https://tfl.gov.uk/corporate/publications-and-reports/crossrail-central-operating-section
- Rail for London, a division of Transport for London, in relation to the Windrush Line.
- Nexus (Tyne and Wear Passenger Transport Executive), in relation to the Tyne and Wear Metro.
- Heathrow Airport Holdings Limited in relation to the Heathrow Airport branch. Its Network Statement can be accessed at: https://www.heathrow.com/company/about-heathrow/rail-regulation.
- Transport for Greater Manchester, in relation to Manchester Metrolink.
- The Supertram network information can be found on the <u>South</u> <u>Yorkshire Mayoral Combined Authority website.</u>
- Core Valley Lines in relation to the CVL network in South Wales owned by TfW and leased to the CVL IM. Its Network Statement can be accessed at: <u>Core Valley Lines infrastructure manager I</u> TfW.
- Associated British Ports, Hutchison Ports UK and other port authorities.
- Numerous 'heritage' railways, often operating in the leisure sector.
- Numerous third-party industrial railways or sidings.
- Various private freight terminals. Please refer to <u>Section 7.3.3</u> for details.

The Network Statements of other European IMs can be downloaded from the RNE website. Please see the following link: https://rne.eu/organisation/network-statements/

We will seek to work with other IMs on the coordination of passenger and freight services that also seek to operate on other IMs infrastructure. In addition to the Regulatory Requirements in the Access and Management Regulations 2016 regarding 'Co-operation in the allocation of infrastructure capacity crossing more than one network', Network Rail's Licence includes a requirement to treat Stakeholders in ways appropriate to their reasonable requirements in their capacity as Stakeholders and, in particular, to the greatest extent reasonably practicable:

- 1. Deal with Stakeholders with due efficiency and economy, in a timely manner and with the degree of skill, diligence, prudence and foresight which should be exercised by a skilled and experienced network facility owner and operator.
- 2. Ensure that our engagement with Stakeholder is:
 - (i) effective in supporting our achievement of the Network Management Purpose and the Passenger Information Purpose, including by ensuring Stakeholder views are duly taken into account
 - (ii) inclusive, in that we seek to involve all relevant Stakeholders in a fair and proportionate manner, including by adopting different approaches to reflect Stakeholders' different capabilities and interests well-governed, in that it is underpinned by effective processes and
 - (iii) well-governed, in that it is underpinned by effective processes and governance arrangements; and
 - (iv) transparent, in that sufficient information is made available to enable effective engagement with Stakeholders

Network Rail, along with some of the other UK IMs above, is also a member of European Rail Infrastructure Managers (EIM) which was established in 2002 to promote the interests of all rail IMs. As well as providing non-EU member states' IMs (e.g in Norway and UK) with an opportunity to engage in discussions around developing technical standards in the region, it can provide a single voice to represent its members vis-à-vis key sector stakeholders (including the global UIC, ERA, and other industry networks) and assists members to develop their businesses through the sharing of experiences, best practice and contributing to various technical and safety activities and discussions.

2.3 Network Description

The operational configuration and physical attributes of our railway infrastructure is described in the National Electronic Sectional Appendix, which is required to be made available (in whole or part) to those accessing the railway infrastructure. It also contains any special instructions required to amplify the Rule Book in respect of operations at specific locations. Some RUs choose to take one copy of each relevant Sectional Appendix and use it to create their own atlas by adding relevant commercial information.

The Sectional Appendix is available as a printed document or can be viewed electronically in a format which contains the latest weekly amendments via the National Electronic Sectional Appendix (NESA). Further information regarding access to NESA can be found at:

https://www.networkrail.co.uk/industry-commercialpartners/information-operating-companies/national-electronicsectional-appendix/

The dynamic nature of our infrastructure requires a regular stream of amendments, all of which must be made available to those in receipt of an Appendix. These are contained in the Weekly Operating Notice and then further collated into the Periodical Operating Notice (PON) which is issued every quarter. Copies of both documents are supplied electronically to those who secured access rights or upon demand.

To obtain electronic copies of PONs and WONs, or to request a printed version at cost to requester, please contact planningpublications@networkrail.co.uk.

General queries regarding these documents can be progressed by contacting the <u>Publications Team</u>.

2.3.1 Track typologies

The definitive source of reference material for the various track typologies – single track, double track/multiple track etc is Table A of the National Electronic Sectional Appendix.

2.3.2 Track gauges

The network operates to one nominal standard track gauge of 1435mm

2.3.3 Stations and nodes

In 2025 the railway comprised 2,597 mainline stations, with up to 25 new stations proposed by 2027. Network Rail owns and manages 20 of the largest stations:

- Birmingham New Street
- Bristol Temple Meads
- Clapham Junction
- Edinburgh Waverley
- Glasgow Central
- Guildford
- Leeds
- Liverpool Lime Street

- London Bridge
- London Cannon Street
- London Charing Cross
- London Euston
- London King's Cross
- London Liverpool Street
- London Paddington
- London St. Pancras International (Lower level platforms)
- London Victoria
- London Waterloo (excluding Waterloo East)
- Manchester Piccadilly
- Reading

The remaining stations, whilst mostly owned by Network Rail, are leased to RUs, usually franchised passenger operators.

The stations that we do not own include those owned by "heritage" railways and other organisations, for example:

- Ashford International
- Aylesbury Vale Parkway
- Bromsgrove
- Coleshill Parkway
- Dunrobin Castle
- Ebbsfleet International
- Fishguard Harbour
- Horwich Parkway
- London St. Pancras International (Upper level platforms)
- Prestwick International
- Southend Airport

- Stratford International
- Warwick Parkway

London St Pancras International is a major railway terminus in central London, comprising 15 platforms serving both domestic and international services. The lower-level Platforms 14 and 15, used by Thameslink for cross-London services, are owned and managed by Network Rail. Upper-level Platforms 1 to 13 are owned and managed by London St. Pancras Highspeed. Operators seeking access to the station via these upper-level platforms must have station access agreements with London St. Pancras Highspeed in place. Access agreements with Network Rail permit access to the station via Platforms 14 and 15 only.

To contact London St. Pancras Highspeed, please refer to <u>Section 1.6</u>.

For further information relating to stations please contact our <u>Head of Stations and Depot Access</u>.

<u>Section 7.3.2.1</u> describes these arrangements in more detail. Distances between stations and other principal nodes, such as junctions, can be derived from Table A of the Sectional Appendix, see <u>Section 2.3.1</u>.

Details about the maximum length of train that may be accommodated at a station can also be found in the Sectional Appendix. The exact table that carries this information differs by route publication.

2.3.4 Loading Gauge

Loading gauge – freight vehicles

The physical dimensions of a railway vehicle and its load can be defined as conforming to one of a series of height and width profiles or standard freight gauges. These gauges can also be applied to a given route, for the purpose of ensuring that a railway vehicle will not meet a lineside or overline structure, such as station platforms, canopies, overhead power supplies (catenaries), overbridges or tunnels.

Wagon and load combinations may be larger than the published gauge of a route with regard to key and critical dimensions. In these situations, following bespoke analysis, a particular combination may be able to run as an 'out of gauge' load to be moved by rail.

This analysis may require a special survey of the route in question to verify the currently available clearances, and the train may need to be operated at a reduced speed. In exceptional cases there may also be restrictions on trains using adjacent lines while the 'out of gauge' load is moving. For further information about the gauge capability of the network please refer to the data tables in the <u>Annual Return</u>.

Our website also contains guidance for obtaining access to the definitive source of detailed information regarding the gauge of the network – the National Electronic Sectional Appendix.

Freight loading gauges on the main rail network

The maximum standard gauge profile for each route varies, reflecting the constraints on rail vehicle size caused by lineside and overline structures. Detail of the freight loading gauge for each route section is given in the Sectional Appendix – see Section 2.3.1. Historically, Britain's railways were constructed by separate companies, often to differing loading gauges. A set of defined loading gauge standards have been adopted for freight vehicles. Railway wagons built to the basic loading gauge (W6A) and currently in operation are capable of operating on virtually any route on the national rail network. For advice on new build (or modified) wagons see Section 3.4.1 of this statement. The larger loading gauges tend to have greater headroom, to enable intermodal flat wagons to carry tall containers and swap bodies on certain routes. The following table provides some illustrative examples of the application of wagon and load conditions within these standard gauges. Full details and definition of the standard freight gauges currently in use in GB are set out in Railway Group Standard GE/RT8073 (Issue 44 -

December 2020; 'Requirements for the Application of Standard Vehicle Gauges'.

The nomenclature W6 is generally taken to include the W6A profile (modified for third rail). The gauges W6A, W7, W8 and W9 are broadly incremental (i.e. the smaller-numbered gauges 'nest' inside the larger-numbered ones); however, W10, W11 and W12 do not (e.g. W9 does not fit completely inside W10).

When new or modified freight locomotives and wagons are being brought onto the network it is important not to make assumptions regarding the extent to which Standard Gauges may be relied upon. Further information regarding the Standard Gauges (including Locomotive Gauge) can be found in Railway Group Standard. GE/RT8073 (Issue 3) which is available on the RSSB's website.

Loading gauge – passenger vehicles

Modern passenger vehicles are built by a wide range of manufacturers to differing generic profiles and therefore these vehicles are cleared on a route-by-route basis as part of their acceptance onto the network. The gauging of passenger vehicles also has to take account of the stepping distances between station platforms and trains. Detail of the passenger train loading gauge clearance is given by train and vehicle class for each route section in the National Electronic Sectional Appendix

2.3.5 Axle Weight Limits

In Great Britain, the rules for determining the Route Availability (RA) number of a vehicle are set out in GERT8006 (Route Availability Number for Assessment of Compatibility between Rail Vehicles and Underline Bridges). The rules set out in GERT8006 include the mass conditions for determining the RA number of a vehicle and take account of the maximum weight of each axle.

The RA number of a vehicle is used in the assessment of technical compatibility between the vehicle and underline bridges at route level. The technical requirements for determining that the static load characteristics of a vehicle are compatible with underline bridges are set out in RIS-8706-INS (Route Level Assessment of Technical Compatibility between Rail Vehicles and Underline Bridges).

GERT8006 and RIS-8706-INS are accessible through RSSB's website.

Axle weight limits and equivalent evenly distributed vehicle loadings which the current network can carry, vary according to the engineering characteristics for each route, particularly for underline bridge and viaduct structures. Axle weight limits and equivalent distributed vehicle loadings are classified into RA numbers between 1 and 10.

Examples of load conditions within standard gauges						
Unit	Container 8'			Container		
Width Wagon				2500mm		
Туре	FEA	IFA	IKA	FEA	IFA	IKA
Maximum Unit Height	Feet, inches			mm		
W6A	8'	8'	8'6"	2402	2448	2568
W7	8'	8'	8'6"	2402	2448	2585
W8	8' 6"	8'6"	9'	2638	2673	2793
W9	9'	9'	9'6"	2725	2770	2896
W10	9' 6"	9'6"	9'6"	2896	2896	2896

Depending on the total and distributed load effects of the vehicle, including effects produced by the spacing of axles in the vehicle and uneven vehicle loading, the maximum vehicle weight may need to be reduced so that the load effects from the vehicle (including payload) do not exceed the relevant RA number of the infrastructure route sections making up the planned journey of the vehicle. Maps indicating these groupings for current permitted traffic flows are contained in the Route Specifications and may be accessed.

The maps provide a broad indication of the predominant capability on each strategic route section. The Route Specifications are not intended to be live operational documents and enquirers should refer to the National Electronic Sectional Appendix which contains the definitive information detailing the RA number of the infrastructure route sections making up the network to ensure that any data being used is the latest available information. Where the contents of the Route Plans or the National Electronic Sectional Appendix in relation to this capability give rise to a need for clarification, enquiries should be made to the contact points given in Section 1.6.

A more detailed expression of the RA load carrying capability for each operational route section is contained in the National Electronic Sectional Appendix broken down to infrastructure route section level. The table on the next page gives examples of load conditions within the RA system.

Examples of load conditions within the RA System	RA
Two-axle vehicle - Gross Laden Weight (tonnes)	
Up to 27.9t	1
Over 27.9t and up to 30.4t	2
Over 30.4t and up to 33.0t	3
Over 33.0t and up to 35.5t	4
Over 35.5t and up to 38.1t	5
Over 38.1t and up to 40.6t	6
Over 40.6t and up to 43.1t	7
Over 43.1t and up to 45.7t	8
Over 45.7t and up to 48.2t	9
Over 48.2t and up to 50.8t	10
Four-axle vehicle (2 x two-axle bogies) - Gross Laden Weight (tonnes)	
Up to 66.0t	3
Over 66.0t and up to 71.1t	4
Over 71.1t and up to 76.2t	5
Over 76.2t and up to 81.2t	6
Over 81.2t and up to 86.3t	7
Over 86.3t and up to 91.4t	8
Over 91.4t and up to 96.5t	9
Over 96.5t and up to 101.6t	10

The RA detailed in the National Electronic Sectional Appendix applies for the permissible speed given in the National Electronic Sectional Appendix (taking account of the permissible speed at each bridge) in conjunction with the following:

- the speed corresponding to the greater of any standard differential speeds (the definition of standard differential speeds is set out in GERT8000-SP (Speeds) available on the RSSB's website).
- the maximum RA for freight traffic at 75mph is RA8.
- Capability stated as RA9 or RA10 is for a maximum speed of up to 60mph (50mph on Kent, Sussex and Wessex Routes). Where speeds in excess of 60mph (50mph on Kent, Sussex and Wessex Routes) up to 110mph are permitted on RA9 or RA10 infrastructure route sections the capability is RA8. Where speeds in excess of 110mph up to a maximum of 125mph are permitted on RA9 or RA10 infrastructure route sections the capability is RA7.
- Capability stated as RA8 is for a maximum speed of up to 110mph. Where speeds in excess of 110mph up to a maximum of 125mph are permitted on RA8 infrastructure route sections the capability is RA7.

For permissible speeds indicated by letters in the Sectional Appendix in Table A, for new vehicles and changes to the operation of existing vehicles the RA is limited to:

- RA5 for HST differential speeds
- RA3 for MU/DMU/EMU differential speeds
- RA1 for SP differential speeds

 vehicle/route technical compatibility for EPS speeds (typically outside the limits of validity of the RA system) is given on an individual basis for each vehicle type on the specific routes stated in the National Electronic Sectional Appendix.

For passenger multiple units and locomotives with maximum permitted speeds equal to or in excess of 100mph and freight traffic with maximum permitted speeds in excess of the criteria set out for RA8 to RA10 above, additional checks are required to confirm the compatibility of vehicles and underline bridges. This is due to the risk of potentially excessive dynamic effects including resonance arising from such rail traffic. More information about the additional checks required in these circumstances is set out in RIS-8706-INS (Route Level Assessment of Technical Compatibility between Rail Vehicles and Underline Bridges), and GEGN8616 (Guidance on Evaluating Excessive Dynamic Effects in Underline Bridges) available on the RSSB's website. Early consultation with us is recommended in such cases.

Early consultation with us is recommended when considering options for new vehicles or operations that exceed the RA of lines or the limits of validity of the RA System. The limits of validity of the RA system are set out in GERT8006.

Heavy Axle Weight (HAW) services are those which operate in exceedance of an infrastructure route section's published RA in the National Electronic Sectional Appendix – they are permitted on the network at the discretion of Network Rail through a dispensation process, and typically operate at RA9 or RA10 (as the Network is predominantly RA8). Dispensations are commonly limited to 24 months and are often subject to operating restrictions, which are detailed on the necessary RT3973/HAW exceptional load form. Further guidance on HAW dispensations and exceptional load forms can be obtained from our Access Coordinators.

The capability of track and structures on an infrastructure route section to carry traffic is dependent on its construction and the maintenance, which is prescribed through the asset policies and is aligned to the traffic demands of the route. There are some routes where an increase in tonnage can be accommodated only with a prior increase in maintenance and renewal activity. Timescales associated with such work can range from several months in cases where increased maintenance is required through to several years where longer-term work on structures is required. Potential users of the network are encouraged to discuss their requirements with us at the earliest opportunity.

The guidance also explains that it is important not to confuse total tonnage capability (which refers to the total volume of freight that a route may carry) with RA (which determines the static loading characteristics including the maximum axle load of individual trains).

2.3.6 Line Gradients

The gradients on a route will have a direct effect on the power to weight ratio necessary to operate a train effectively and efficiently. Gradients on the main line network may be as steep as 1 in 37. In such cases additional locomotives may be required on occasion to assist heavy freight trains. Some loss of performance may be experienced across all vehicle types, but this will be accommodated in section timings. Short extent gradients up to 1:25 occur in very specific locations (such as Farringdon at 1:29 and other station approaches) due to surrounding non-railway infrastructure. There is no evidence of these conditions affecting historic services, however, the effect on drawbar load and traction performance should be considered by the proposers of future services.

Line gradients for each route section are established at the time of a route's construction. A summary map showing prevailing gradients on each route, classified according to severity is provided in Annex 3.

2.3.7 Maximum Line Speed

Each route section is governed by speed limits: normal, raised, and wrong direction working. Different limits may be imposed for different types of passenger and freight trains. In some cases, to minimise potential damage to the track and structures, a special freight heavy axle weight speed restriction may apply over and above the restrictions for other types of trains. We are reducing the number of locations where such restrictions apply. Permissible speeds will also be governed by other factors, including the capabilities of the signalling or the nature of the track. Permissible speeds impact mostly on freight trains to varying degrees, and this is taken into consideration when constructing a timetable.

The permitted speeds per line for each route section are contained in Table A of the Sectional Appendix, see <u>Section 2.3.1</u>.

2.3.8 Maximum Train Lengths

The maximum length at which a train may operate is usually determined by infrastructure parameters such as length of sections between signals, length of loops or sidings that may be required to recess a slower train for a faster one to pass, ability to hold a train at a junction without detriment to other movements and the length of platforms and lines at terminals.

Permitted passenger train lengths are published in the Timetable Planning Rules – see <u>Section 4.5.4</u>.

During the train planning processes described in <u>Section 4</u> (capacity allocation) it may be possible to identify opportunities to run longer

trains which exceed the normal parameters (which are known as 'Operating Constraints'). This particularly applies to the operation of freight trains.

We will use all reasonable endeavours to facilitate operations that maximise the traction capability of the train and allow the above parameters to be exceeded where this can be done without importing undue risk of delay to the operation of others. This may dictate the need to apply other limitations as to the allocation of a train path (such as by time of day, so as to avoid busy periods).

Permitted freight train lengths are published in the Freight Train Loads Books (FTLBs). See <u>Section 6.2</u>.

Passenger train lengths may be limited by safety requirements at stations with short platforms or may require (in the case of trains with power operated doors) a capability for selective door operation. The RU is responsible for managing these safety risks.

When we renew and enhance the network, we consult with stakeholders in order to identify effective opportunities to improve the infrastructure to accommodate longer trains.

2.3.9 Power Supply

Our infrastructure can be equipped with electrification. We have three different electrification systems:

- 25kV AC overhead supply, provided through overhead wires (catenary), collected by a pantograph on the locomotive or carriage roof
- 750V DC third rail supply, provided by a third rail running alongside the running lines, collected by shoes fitted to the locomotive or carriage bogies.

 1500V DC overhead supply, provided through overhead wires (catenary), collected by a pantograph on the locomotive or carriage roof.

Regenerative braking is supported by both the 25kV AC and 750V DC electrification systems.

Multimode trains can have the capacity to operate on electric traction, diesel and / or battery power. In addition, locomotive hauled trains may switch between locomotives at major hubs, such as between diesel and electric locomotives. Therefore, whether the points of origin and destination are electrified need not be a major constraint upon operation by electric traction.

Early consultation with Network Rail is recommended when considering options for new vehicles or operations that change the electrical loading of the system; this is to ensure sufficient capacity is available. Examples would include changing diesel to electric rolling stock or the introduction of electric freight services.

A national scale map showing the general extent of electrification of the network is provided in Annex 1. Details of upcoming electrification works can be found within our <u>Enhancement Delivery Plan</u>.

2.3.10 Signalling Systems

The rail network is controlled by a variety of signalling systems including traditional mechanical, electro-mechanical, electronic and digital systems. Mechanical systems are controlled from traditional signal boxes and are limited to a small area of control. Electrically powered systems can operate points and signals over considerable distances by means of remote-control systems. The extent of control for powered systems varies considerably and often depends on the age of the installation. Multiple

systems are often re-controlled to centralised centres to increase the area of control.

The type of signalling and its design determines the capacity of a section of route and may impact the line speed trains can run.

Signals are generally colour-light although semaphore signals remain in many areas. The positions of trains are determined by track circuits or axle counters although on some routes, train detection may be limited, and movements are controlled by means other than lineside signals.

The purpose of signalling systems is to run trains safely and efficiently. These systems gather information about the position of trains, the routes they need to take, the type of train, the timetable and other factors. This information is used to control points, signals and protection systems in accordance with complex safety principles and operational rules. The concept of a track 'block' is used to separate trains safely, and whilst systems work differently depending on the technology used, they can be classified generally by block type. The principal types of system are:

- Track circuit block
- Absolute block.

Other types of block systems currently in use include:

- Electric token block
- Radio electronic token block
- Tokenless block
- One train working
- 'No signaller' token working.

NESA Table A provides details of the system in use on individual sections. Information on how to request access to NESA can be found on <u>our website</u>.

Level Crossings

Level crossings are locations at which a public highway or private access route cross the railway at the same level. There are many different types of level crossing system, defined by a combination of the access and the equipment and signage provided to support the safe use of the level crossing. Further information on our signalling systems can be found on our website.

Some types of level crossing require a train driver (or, in some instances, another member of train crew) to take specific actions as the train approaches the level crossing, for example:

- Sound a warning where indicated by a whistle board,
- Confirm the crossing is clear of obstructions before passing over it (such as at a locally monitored level crossing),
- Operate controls to initiate the level crossing system (such as at a train crew operated barrier crossing).

Signalling Control Systems

A variety of technologies are used to route trains and broadly reflect the age of the signalling as well as timetable and control needs. Digital computer-based train control and routing systems have been in use since the 1980s. Whilst most of these systems can set routes automatically, their functionality is limited. Traffic management systems which are currently being implemented, manage large areas of the railway and can route trains more strategically. They enable timetable and operational plans to be altered in real-time and provide decision-support facilities to operators. Signalling systems still ensure trains are run safely.

European Rail Traffic Management System (ERTMS)

Radio-based signalling in the form of European Train Control System (ETCS) Level 2 is in operation on the ETCS equipped Cambrian Lines, the

core section of Thameslink, Western Route (Paddington to Airport Junction) as well as on the Northern City Line in the Eastern region (East Coast Digital Programme (ECDP). In this system, trains report their location via radio to a central processing system which determines what train movements are safe and communicates that information to individual trains, again by radio. Authorities to move are passed directly to the driver in the cab without the need for lineside signals; lineside signals may be retained for operational and migration purposes (Overlay). Communications between the central processing centre and trains is by GSM-R (see below). ETCS is Network Rail's preferred train control system going forward and plans for its short and longer-term deployment are being agreed with the wider industry. The Long Term Deployment Plan (LTDP) was agreed between the Department for Transport (DfT), Network Rail and industry as an integrated industry plan for the delivery of ETCS. This is a long-term plan for ETCS deployment over several control periods. The East Coast Digital Programme is one such scheme delivering ETCS level 2 during this and subsequent control periods. The LTDP integrates ETCS driven infrastructure changes with train fitment and business change activities to deliver the network digital programme.

<u>Details of the programme are maintained here</u>. This includes additional ETCS schemes funded to start during Control Period 7 (2024-2029), including on the following routes:

- TransPennine Route Upgrade (TRU) which includes ETCS deployment between Stalybridge and Colton Junction;
- The West Coast North Modernisation renewals programme on West Coast Main Line North which includes ETCS-based signalling renewals between Warrington and Carlisle;
- Brighton Main Line;
- Midland Main Line St Pancras to Silkstream Junction

In the future, new access beneficiaries will be required to operate ETCS-fitted rolling stock, should their line of route be signalled with ETCS level two. A portfolio team supports the delivery of the LTDP and should be contacted at IPDRDSPortfolio@networkrail.co.uk for further information about the requirements for operating on ETCS signalled routes. Eurobalise equipment is provided at various locations on the network to support non-ETCS functions (such as power change over or door opening). Details of ETCS configuration parameters for the network maintained by Network Rail as infrastructure manager.

2.3.11 Traffic Control Systems.

Traffic control is exercised through a network of Route Control Offices. The National Operations Centre also exists that provides an overview of the control function. Controllers take action in relation to current train running and in response to incidents and emergencies to mitigate the impact of any disruptive events. In some cases, train and freight operating companies' control staff are co-located in these control offices to enable more integrated working.

The Total Operations Processing System (TOPS) is a legacy computer system that monitors train movements in real-time on the network. Many reports on movements are derived automatically through the signalling systems but some manual reporting is required. Train Consists for freight trains contain essential information about the composition of trains, including vehicles being conveyed, weights and lengths, and any special information about dangerous goods. The operator inputs the Train Consists detail into the TOPS before its departure and the consist remains 'live' in the TOPS until the train reaches its destination.

Train movement information in TOPS is compared with information about a train's schedule through a sub-system called TRUST to provide current train running information to other systems (including Customer

Information Systems) and controllers. TRUST is also used to identify the source of delays to trains and, through an attribution process, the causes of delay are recorded for subsequent performance analysis. These systems are likely to be superseded by newer technology.

2.3.12 Communication Systems

Railway telecommunications systems provide services used in safe train movement authorisation, direct operation of the railway and passenger information. The railway telecommunications network consists of:

- Voice and Data Transmission systems including network management systems
- Operational voice communications (e.g. fixed lineside telephone systems, Level Crossing Public Emergency Telephone Systems, train borne and hand portable radio GSM-R)
- Cabling (e.g. fibre and copper cabling) and cable route
- Telephone exchanges
- Driver Only Operation CCTV and mirrors
- Station Information and Surveillance Systems (Customer Information Systems, Public Address and security CCTV)
- Security systems (e.g. firewalls, security systems and security operations centre)
- Business fixed and mobile voice and data networks and systems
- Data centres

The telecoms corporate network links all Network Rail's offices, sites and data centres together to enable user access to corporate IT systems and capabilities. The corporate telecoms services include office telephony, call centre services, LAN, WAN and Wi-Fi which was upgraded over 2020/21 to cater for the wireless first initiative and increased bandwidth to cater for Microsoft Teams usage in the workplace. The Corporate User Experience (CUE) is a modernisation programme running to update the

whole enterprise architecture nationally which will be completed in CP7 introducing software defined networking and a managed service provider model.

The corporate network is also used to interconnect corporate IT systems with railway operational systems.

Below is a brief explanation of our transmission systems and operational voice communication systems:

FTN – Fixed Telecommunications Network (SDH)

The FTN is a national communications transmission network based on SDH (Synchronous Digital Hierarchy) technology which is used as the communication bearer to carry operational traffic such as GSM-R, Signalling transmission, SCADA transmission, axle counters and operational voice systems. The platform was designed and delivered within the FTN/GSM-R programme with a primary purpose of carrying the GSM-R traffic from the trackside masts back to the core platforms in Stoke and Didcot. In addition, the platform has been used to carry signalling and SCADA data back to the relevant central locations (Infrastructure Control Centre). The asset-base and technology is now reaching life expiry and will require migration to FTNx in the near future.

Fixed Telecommunications IP Network Next Generation

The FTNx is a national communications transmission network based on DWDM (Dense Wave Division Multiplexing) utilising OTN (Optical Transport Network) technology and IP/MPLS (Internet Protocol/ Multiprotocol label switching) technology which is used as the communication bearer to carry operational traffic such as GSM-R, signalling transmission, SCADA transmission, axle counters, CCTV, corporate and operational voice systems. The platform utilises next-generation industry standardised technology (ethernet) to carry transmitted traffic from the trackside to various central/control locations. The FTNx transmission

network has been built and designed to replace the FTN (Fixed Transmission Network) network over a period of time and to deliver additional capacity, capability and improved service offerings via next-generation COTS technology and enabling the foundations of a Digital Railway. Expansion of the FTNx access layer is required to enable the migration from FTN ahead of the FRMCS roll out in CP8 (2029- 2034)

The network has been designed to carry and support the latest Time Division Duplex (TDD) mobile services and their clocking requirements. The FTNx core and aggregation network is certified to NIS-D security requirements.

GSM-R

The Global System for Mobile Communications-Railway (GSM-R) is a national radio system used for communication between drivers and signallers using 2G mobile radio network technology. It allows signalling staff to address drivers of individual trains based on train head code and provides the Railway Emergency Call and group call features which broadcasts to all trains in pre-defined areas to alert them to incidents or operational circumstances that affect them. Drivers may also create similar Railway Emergency Calls in the event of an emergency that threatens the operational safety of other vehicles. GSM-R also supports ETCS providing the radio data link connection to the on-board equipment. Early ETCS installations such as Cambrian, were provided using a circuit switched solution. During 2021, the core network upgrade to enable GPRS for the data links was completed.

GSM-R, an essential subsystem of ERTMS, is mandated by the EC CCS NTSN. (European Commission – Control Command and Signalling) and will be replaced by the new FRMCS (Future railway mobile communication system) based on an all IP, 5G mobile network technology.

Radio Electronic Token Block (RETB)

RETB is a signalling system that is transmitted over a telecoms radio network covering the West Highland Line and Far North Line. The radio system also provides the voice communication (similar to GSM-R).

Station UHF Radio Systems

UHF radio systems provide communications for site specific applications such as station management or in the case of marine radio to interface with public boat traffic.

PSTN

The public switched telephone network will be decommissioned by BT in January 2027. Network rail currently has approximately 8000 PSTN circuits provided by BT that will need to have an alternative solution deployed in order to retain continued service.

In addition, other analogue services provided by BT were switched off in 2023 with migration to the FTNx network being preferred which has driven network expansion.

2.3.13 Train Control Systems

Shunting locomotives specifically confined to marshalling yards may be exempted from train control systems.

AWS – Automatic Warning System

AWS is a mandatory system fitted in driving cabs on locomotives, Driving Van Trailers (DVTs), multiple-units and on-track machines. It provides a visual and audible reminder to the driver of:

- a 'warning' or 'clear' signal indication, or
- certain specific permanent or temporary speed restrictions.

Failure of the driver to acknowledge AWS warning indications will automatically apply the train brakes.

TPWS – Train Protection Warning System

TPWS is a mandatory automatic system fitted in every driving cab on locomotives, DVTs, multiple-units and on-track machines, which is designed to:

- initiate a brake application should the train pass selected signals at danger or approach selected signals at danger too fast
- initiate a brake application should the train approach buffer stops too fast
- initiate a brake application where a train approaches certain permanent speed restrictions too fast.

ATP - Automatic Train Protection

ATP is the legacy system utilised on specific sections of the network to provide absolute train control in the event of a driver failing to control the train in accordance with the permitted speed or in the absence of a movement authority. It is only fitted on certain trains operating on the Great Western Main Line. The ATP system formerly provided on the Chiltern line has been decommissioned and replace with enhanced TPWS provisions. Further expansion of ATP is not envisaged as this functionality will be provided by the future ETCS implementation.

2.4 Traffic restrictions

Information relating to general restrictions is covered in Table D of the Sectional Appendix. This deals with each of the route sections as set out in Table A of the same Sectional Appendix (see Section 2.3).

2.4.1 Specialised Infrastructure

Particular sections of our infrastructure may be designated for use by specified types of rail service and may give priority to that specified type in the allocation of infrastructure capacity. This is subject to certain matters as set out in Regulation 25 of the Access, Management and Licensing Regulations. The purpose of such a designation is to enable priority to be given to the specified type of rail service, even though there may be other types of rail service which conform to the characteristics necessary to use that infrastructure. The identification of characteristics of rail service that may be precluded from using sections of infrastructure is not in itself such a designation.

There are two sections of the network which are designated as specialised infrastructure:

- Tuxford Test Track
- Melton Test Track.

In each case, the facility has been subject to specific investment to enable it to serve as a testing facility for new and modified rolling stock, yellow plant and infrastructure technology for the benefit of the rail industry. To safeguard the primary purpose of these test tracks the normal arrangements for network access do not apply and special charges are made for access to reflect the special services provided. All access is granted subject to availability on a 'first come, first served' basis at the point of application and obtaining Approval to Test from Test Tracks System Review Panel (SRP). Applications for access are made to the <u>Business Support Manager</u>

2.4.2 Environmental restrictions

The operation of trains on the main rail network is subject to the requirements of UK environmental and related legislation. This includes

compliance with statutory nuisance provisions such as noise, emissions and the disposal of waste, including from train toilets. In line with these legal obligations, the discharge of waste from train toilets onto the rail network is prohibited. Both Network Rail and Railway Undertakings (RUs) are required to ensure full compliance with these requirements.

Section 122 of the Railways Act 1993 also provides a level of statutory authority as a defence to actions in nuisance and certain other legal proceedings.

2.4.3 Dangerous Goods

RIS-3781-TOM Issue 2 Requirements for the operation of freight trains and the conveyance of dangerous goods by any train - sets out the circumstances and conditions for the movement of dangerous goods consignments by rail. The list of dangerous goods by UN number is contained within RS524 Issue 1.1 List of Dangerous Goods and their United Nations Numbers.

The following permanent restriction is in force:

GW900 - PILNING TO FISHGUARD HARBOUR Severn Tunnel (7668 yards / 7012 metres) Restriction of traffic, exceptional loads, dangerous goods etc. Trains conveying dangerous goods traffic must not be permitted to enter the tunnel if a passenger train is travelling through or about to enter the tunnel on the opposite line.

2.4.4 Tunnel restrictions

Table A of the Sectional Appendix lists each tunnel structure giving its precise location and length. Examples of specific tunnel restrictions in force are shown below:

Trains hauled by certain locomotive types may not pass through Tankersley Tunnel (South Yorkshire) due to limited clearances. The structure is located between Meadowhall and Barnsley (South Yorkshire). An alternative route to this tunnel is available via Swinton (South Yorkshire).

Trains worked by diesel traction may not normally pass through the underground sections of the electrified Merseyrail system, due to the limited ventilation system and risk of fire.

Full details of restrictions are contained in the Sectional Appendix. The infrastructure is subject to change through planned renewal and enhancement activity, which can impact on the need for tunnel restrictions. See <u>Section 2.3</u> for further information.

2.4.5 Bridge restrictions

Information relating to general restrictions on route availability is covered in Table D of the Sectional Appendix. These deal with each of the route sections as set out in Table A of the same Sectional Appendix. The infrastructure is subject to change through planned renewal and enhancement activity, which can impact on the need for bridge restrictions, see Section 2.3 for further information.

2.5 Availability of the infrastructure

Infrastructure availability is affected by the restrictions required for the purpose of maintenance, renewal and enhancement works, which are set out in the <u>Engineering Access Statement (EAS)</u>. Further information regarding the EAS is included within <u>Section 4.3.2</u>.

The EAS describes the rules regulating the arrangements for engineering access to the rail network. It sets out the location, number, dating and duration of possession access (restrictions of use) we require to deliver inspection, maintenance, renewal and enhancement work activities to the infrastructure.

Sections 1,2, 3 and 6 of the EAS set out the national process for negotiating and securing engineering access to the rail network.

Sections 4,5 and 7, the bulk of the EAS document, contain route-specific details of our engineering access opportunities and requirements.

2.6 Infrastructure development

The rail network must constantly change to meet the needs of our customers and other stakeholders; this includes developing and growing the network to deliver new benefits to passengers and freight users. The government ultimately makes decisions about how funding to enhance the railway is spent and makes choices about investment in railway capability to support their wider objectives.

Infrastructure enhancements programmes are progressed through a pipeline approach with incremental investment decision points, which aligns to the recommendations of the Bowe review. This approach creates a rolling programme of investment, focused on outcomes that provide benefits for passengers, freight users and the economy and moves investment in enhancements away from a rigid 5-year funding cycle. For DfT funded projects, more details of how this works are set out in the Rail Network Enhancements Pipeline (RNEP) publication, produced by DfT and last updated in 2019.

The purpose of a pipeline approach is to progress projects which will deliver the best outcomes for passengers and taxpayers. Projects are subject to business case and affordability reviews at key stages of their lifecycle and not every project that starts development will necessarily reach delivery and finish. Only projects which are committed in the delivery phase are funded through to completion. These projects are published in Network Rail's Enhancements Delivery Plan which is updated quarterly. For projects earlier in the lifecycle, DfT publishes

updates to the RNEP setting out which stage of the lifecycle each project or proposal is at.

In Scotland similar processes are in place for the planning and funding of rail improvement projects by Transport Scotland and these are articulated in the <u>Rail Enhancements & Capital Investment Strategy.</u>

Chapter 3 - Access Conditions

3.1 Introduction

Chapter 3 of the Network Statement describes the terms and conditions related to access to the railway infrastructure that we manage.

3.2 General Access Requirements

We are the facility owner of the main rail network in Great Britain. Access to our network is, currently principally governed by the Railways Act 1993 (as amended), and by the Railways (Access, Management and Licensing of Railway Undertakings) Regulations 2016 (as amended). This regime also covers networks outside the main rail network, to the extent that they have not been exempted.

Under the Railways Act 1993, anyone seeking access to the rail network in order to operate trains requires a track access contract with the relevant 'facility owner', granting permission to use that facility. We are the facility owner of the main rail network in Great Britain.

Stations and light maintenance depots are treated as separate facilities. If a RU requires access to a station or light maintenance depot, it will need to enter into an access contract with the facility owner. Although we are the landlord for most of the stations and light maintenance depots in Great Britain, we are often not the facility operator. For stations, there are 20 managed stations that are historically key exceptions (as listed in Section 2.3.3).

Most stations and light maintenance depots are leased to and operated by passenger train operating companies, who act as the facility owner, although some are owned and operated by non-train operators (such as Southend Airport station), specialist train maintenance companies or Freight Operating Companies (FOCs).

Under the Railways Act 1993, applicants may only enter into a contract with a facility owner for permission to use that owner's railway facility with ORR's approval. If these contracts (and amendments to them) are not approved by ORR where is required by law, they are invalid.

Where the parties have not been able to agree on the terms of a new contract, or a subsequent amendment to an existing contract (e.g. where the applicant is seeking increased use of the network or facility), the applicant may ask ORR to issue directions requiring the facility owner to enter into or amend the contract as determined by ORR.

We will guide applicants seeking access to the main rail network through both the track access application process, and the station and depot access process, where access is sought.

The access regime under the Railways Act 1993 does not apply to all access contracts. Some railway facilities, including many of those that we do not operate as part of the main rail network, have been exempted by ORR or the DfT². However, the Access, Management and Licensing Regulations provide RUs with the right to access railway infrastructure for the purpose of the operation of any type of rail freight service or passenger service. They also create a presumption of access and provide the right for a railway applicant to apply for access to a range of services and facilities to operate these services. The Access, Management and Licensing Regulations accordingly open up access on a non-discriminatory basis to a range of previously exempted facilities, such as

² For example, many freight terminals and depots, as well as non-Network Rail networks, were exempted by <u>The Railways</u> (Class and Miscellaneous Exemptions) Order 1994.

terminals and ports, marshalling yards and storage sidings, unless a viable alternative under market conditions exists.

ORR has a guide to help prospective operators entitled '<u>Starting Main Line Train operations: A guide to the regulatory framework'</u> for potential train operators.

In order to be able to secure access to and operate on the main rail network, whether for domestic or international traffic, it is necessary for an applicant to fulfil various requirements such as those set out in the remainder of this Chapter.

Industrial locomotive operation

For arrangements to facilitate the operation of industrial locomotives to undertake shunting movements over a limited extent of network sidings or freight only lines. and for further information on marshalling yards and train formation facilities, including shunting facilities, please refer to Section 7 on Service Facilities including section 7.3.4.

There are a range of documents setting out general commercial conditions and rules in respect of access to the network. Key documents are described below.

Network Code

The Network Code is a common set of rules that is incorporated by reference into each track access contract. The track access contract governs the legal relationship between us and each train operator that uses our infrastructure. The Network Code does not create any contractual relationship between train operators, but it should be noted that, in the event that there is a conflict of interpretation between the Network Code and the track access contract, the Network Code prevails. Any undertaking that is party to a track access contract is subject to meeting all the obligations within the Network Code.

The purpose of the Network Code is to provide mechanisms by which parties can make regulated changes to:

- the working timetable
- the rolling stock that a train operator wishes to operate
- the infrastructure
- the Network Code itself.

It also provides mechanisms to:

- establish procedures relating to environmental damage
- establish a performance monitoring system
- establish procedures in the event of operational disruption
- establish procedures to change Access Rights.

The Network Code can be found, together with other related information, on <u>our website</u>.

Performance Data Accuracy Code

The Performance Data Accuracy Code (PDAC) is incorporated into the Network Code (Part B) and encompasses defined standards of accuracy of performance data. It is used in connection with the performance monitoring system, which assesses the respective responsibilities for delays to and cancellations of trains. The system feeds into contractual arrangements and processes which encourage performance improvement and the minimisation of disruption.

The PDAC can be found on the Delay Attribution Board section of our website at: https://www.networkrail.co.uk/industry-and-commercial/information-for-operators/network-code/delay-attribution-board/

Delay Attribution Principles and Rules (DAPR)

The DAPR document is incorporated into the Network Code (Part B) and provides guidance for the consistency of application and approach by all parties involved in the process of delay attribution. This enables accurate records to be kept of the causes of delay to and cancellation of train services resulting from incidents occurring across the main rail network. The document supports the need for management information as well as the requirement for parties to be compensated accordingly for delays experienced.

Access Dispute Resolution Rules

The <u>Access Dispute Resolution Rules</u> are annexed to the Network Code and set out how disputes under track, station and light maintenance depot access contracts are resolved. Further information can be found in Section 4.5.5.

Railway Operational Code

The purpose of the <u>Railway Operational Code</u> (ROC) is to sustain the operation of train services on the network and restore operation of the network following disruption.

Access Rights Code of Practice

We want to make it as easy as possible for stakeholders to do business with us. Our Access Rights are an important part of that, letting them know what they can expect from us. We want to be transparent and easy to do business with, and we want our stakeholders to experience and notice a quality service when dealing with us.

Our <u>Access Rights Code of Practice</u> sets out how Network Rail will manage requests for the sale of access rights from those who seek to use the network, and how those rights will be specified regarding England and Wales, together with Scotland where special provisions apply. The

Code of Practice details regulatory obligations and mechanisms which are applicable to Network Rail in considering requests for access to the network.

The aims of the Code of Practice are to create a clear, understandable framework for access rights that:

- Enables the efficient allocation of capacity in line with Network Rail strategy and policy objectives
- Supports the delivery of a punctual and reliable train service
- Provides the certainty required for operators to run their businesses and meet their contractual commitments
- Provides for the flexibility to adapt services to meet passenger and freight market needs
- Delivers value for money, supporting economic growth and supports the realisation of benefits for investment, including infrastructure enhancements and rolling stock.

Also, in a way that gives confidence to the rail industry, users and funders through:

- Transparent, timely information
- Clear, reasonable requirements and guidance for applications
- Consistent, evidence-based decision-making without undue discrimination.

Our Stakeholder Relations Code of Practice also includes information for new and potential train operators (including aspirant open access operators), which outlines how we will work with potential customers.

Access Contracts

All such access contracts are subject to approval by ORR <u>Track Access Managers</u>. If not approved, the contracts will be legally invalid. ORR has published a range of model access contracts, as well as guidance on the approval process.

Sections 17, 18, 22 and 22A of the Railways Act 1993 relate to access contracts:

Section 17: http://www.legislation.gov.uk/ukpga/1993/43/section/17

Section 18: http://www.legislation.gov.uk/ukpga/1993/43/section/18

Section 22: http://www.legislation.gov.uk/ukpga/1993/43/section/22

Section 22A: http://www.legislation.gov.uk/ukpga/1993/43/section/22A

The model contracts have been published on the basis that ORR encourages, and expects, their use. Where the contracting parties wish to depart from a model contract, they must explain the reasons for this.

Model track access contracts can be found on ORR's website

Model station and depot access contracts can be found on <u>ORR's website</u> along with a range of other ORR-issued template documentation relating to station and depot access, including access conditions, annexes, amending documents and amending agreements.

General Approvals

Sections 18(1)(c) and 22(3) of the Railways Act 1993 enable ORR to give its prior approval of new access agreements and to the amendment of existing agreements.

ORR has also issued a number of general approvals in relation to certain types of access contract (and subsequent amendments to them).

General approvals prospectively allow parties to enter into certain types of access contracts without the need for ORR's specific approval.

The ORR has produced wide-ranging general approvals for use in the majority of station and depot access applications for new agreements, and amendments to existing agreements which can be found here: General approvals | Office of Rail and Road (orr.gov.uk)

Other general approvals have been published on ORR's website:

Access for passenger operators | Office of Rail and Road (orr.gov.uk)

Access for freight operators | Office of Rail and Road (orr.gov.uk)

Connection contracts | Office of Rail and Road (orr.gov.uk)

In 2023 ORR updated its General Approval on short-term timetable and miscellaneous changes: <u>Passenger Access</u> (<u>Short Term Timetable and Miscellaneous Changes</u>) <u>General Approval 2023 (orr.gov.uk)</u>; the most recent Freight General Approvals were updated in 2024.

Access guidance

ORR has published guidance that sets out its approach to regulating track, stations, and light maintenance depot access. This includes:

- guidance for the <u>approval of track access contracts</u>
- criteria and procedures for the <u>approval of station access</u> <u>agreements</u>
- Criteria & procedures for the approval of depot access agreements | Office of Rail and Road (orr.gov.uk)
- policy on the <u>approval of track access options</u>, under which securing future access to the network is linked to investment in new railway facilities.

RUs seeking access to and use of other facilities connected to the main rail network should refer to <u>Section 7</u>, in particular as regards details of additional and ancillary services.

3.2.1 Conditions for Applying for Capacity

The timetabling process (governed by <u>Part D of the Network Code</u>) is open to anyone who is a party to the Network Code by virtue of having a track access contract, or anyone who proposes in good faith to enter into such a track access contract and has agreed to be bound by Part D.

Such a person does not need otherwise to satisfy the requirements referred to in <u>Section 3.2.2</u> below to participate in the timetabling process, though those requirements will need to be satisfied before actual use of the train paths takes place.

Following an approach from a current or potential RU we will advise on the likelihood of train paths being available on the relevant part of the network for the RU to operate a service. This will be based on the active timetable in operation at the time.

RUs normally participate directly in the timetabling process. However, a RU (or potential RU or other holder of access rights) may engage a third party (such as another RU or an independent consultancy) to make its requests for train paths. Where an operator of international services makes use of the 'OSS' arrangements offered by another European IM or RNE (see Section 1.7.2) then that IM acts on its behalf within the GB timetabling process.

Under the Access, Management and Licensing Regulations an applicant who has been granted capacity by the IM, either through a framework agreement specifying the characteristics of the infrastructure granted or specific infrastructure capacity in the form of a train path, cannot trade that capacity with another applicant or transfer it to another undertaking or service.

One exception, which applies only where one RU is replacing another in the provision of transport services to a third party for the carriage of goods, is a process within <u>Part J7 of the Network Code</u> for the surrender and reallocation of access rights.

Templates for notices to be issued to us under Part J of the Network Code can be found on our website

Any person who trades in capacity contrary to the provisions stated above shall not be entitled to apply for capacity for the period of the working timetable to which the allocation of capacity transferred relates.

3.2.2 Conditions for Access to the Railway Infrastructure

Anyone wishing to operate trains on the main rail network must satisfy the relevant legal requirements. The principal requirements include but may not be limited to:

- holding a <u>train operator's licence</u> or licence exemption see
 Section 3.2.3
- establishing and maintaining a safety management system that meets the requirement of ROGS and holding the appropriate safety certificates for intended operations. – see <u>Section 3.2.4</u>
- having appropriate insurance see <u>Section 3.2.5</u>
- being party to a track access contract.

Compatibility consultation also needs to be completed for all rolling stock operating on the network. The rolling stock compatibility guidelines are discussed at Section 3.4.1.

3.2.3 Licences

It is an offence to act as the operator of a train in GB without holding a licence or a licence exemption granted by ORR under the Railways Act 1993. However, where a person is seeking to act as the operator of a

passenger train or freight train that falls within the scope of <u>The Railway</u> (<u>Licensing of Railway Undertakings</u>) <u>Regulations 2005</u> (as amended), then a Railway Undertaking licence is normally required, together with a Statement of National Regulatory Provisions ("SNRP"). Applications for licences and SNRPs, or exemptions should be made to ORR's <u>Licensing Team</u> (for ORR's full contact details, see <u>Section 1.6</u>).

As a result of the UK leaving the European Union, any licences that were issued in an EU country were only valid in GB until 31 January 2022. Please see the Department for Transport's website at: https://www.gov.uk/guidance/rail-transport-domestic-and-cross-border-operations#operator-licences.

Railways Act licences (and the SNRPs of Railway Undertaking licence holders) would normally include among other obligations:

- membership of RSSB
- membership of the Rail Delivery Group (RDG)
- joining in the rail industry arrangements for allocation of liabilities and claims handling
- having an environment & sustainability policy which aligns with DfT's Rail Environment Policy (REP) and contains operational objectives and management arrangements to meet the REP's requirements
- ticketing (passenger licences only)
- insurance (see <u>Section 3.2.5</u>).

3.2.4 Safety Certificate

Anyone seeking to operate a train in GB will be required to establish and maintain an appropriate safety management system and should hold a safety certificate.

ORR has made some updates to its <u>Guide to ROGS</u>, <u>which</u> provides the current approach to safety certification and safety authorisation assessments and provides a guide for railway duty-holders on the application process. The ROGS legislation can be found at: https://www.legislation.gov.uk/uksi/2006/599/contents/made

Please visit ORR's website for more details:

https://www.orr.gov.uk/guidance-compliance/rail/health-safety/laws/rogs/certificates-authorisations
https://ORR.gov.uk/what-and-how-we-regulate/health-and-safety/regulation-and-certification/rogs/safety-certificates-and-authorisation

Rolling stock and staff competence are dealt with in <u>Section 3.4.1</u> and <u>Section 3.4.2</u>, respectively.

Further information, including guidance documentation and details on how to make an application can be found on ORR's website at:

https://www.orr.gov.uk/guidance-compliance/rail/health-safety/laws/rogs/certificates-authorisations.

3.2.5 Insurance

A train operator's licence, or SNRP, will contain requirements for insurance against third party liabilities. The current default minimum of indemnity insurance is set at £155m cover per incident as required by ORR's general approval (see below); however, a variation to the general approval may be agreed where appropriate on application to ORR.

The general approval can be downloaded from **ORR's website**.

3.3 Contractual Arrangements

3.3.1 Framework Agreement

A Framework Agreement for the purposes of the Access, Management and Licensing Regulations specifies the characteristics of the infrastructure capacity allocated to an applicant over a period of time exceeding the duration of a single working timetable period. It does not specify train paths in detail but provides an assurance that suitable capacity will be available to meet the commercial needs of the applicant. Train paths and train slots are explained in more detail within the section *Terms explained*.

In Great Britain, the function of Framework Agreements is fulfilled by track access contracts for access to the main rail network.

We are permitted to enter into bi-lateral agreements with RUs and others to develop infrastructure enhancements, although if such an agreement were to include rights to use a railway facility (such as the main rail network) then it would need to be approved by ORR, as a track access contract. The Railways Act 1993 provides for the possibility of such rights to take the form of either the normal grant of rights or of an access option. The basis for ORR approval is set out in the track access guidance that is published on its website.

Further information on track access and how to apply for this access can be found on ORR's website at:

https://orr.gov.uk/guidance-compliance/rail-guidance-and-compliance/operator-access-network/track-access

Links to model track access contracts and station and light maintenance depot access contracts are provided in <u>Section 3.2.1</u>.

Before concluding a new framework, agreement or extending or increasing the framework capacity of an existing framework agreement,

we shall take into account in addition to our Access Rights Code of Practice, any relevant legislation, and relevant policies or guidance the ORR or ourselves have published

3.3.2 Contracts with RUs

RUs seeking access to the network must enter into a track access contract to cover the full scope of the intended operations before those operations may begin. This is required to deliver the minimum access package as set out in the Access, Management and Licensing Regulations, in relation to the main rail network. RUs seeking access to stations or light maintenance depots that they do not operate themselves will need to enter into separate access contracts with the relevant station or depot facility owner (unless those facilities are exempt from the access provisions of the Railways Act 1993 by virtue of The Railways (Class and Miscellaneous) Exemptions Order 1994). All such access contracts are subject to approval by ORR; if not approved, the contracts will be legally invalid. ORR has published a range of model access contracts, as well as guidance on the approval process. The model contracts have been published on the basis that ORR encourages and expects their use. Where the contracting parties wish to depart from a model contract, they must explain the reasons for this.

Sections 17, 18, 22 and 22A of the Railways Act 1993 relate to access contracts:

Section 17: http://www.legislation.gov.uk/ukpga/1993/43/section/17

Section 18: http://www.legislation.gov.uk/ukpga/1993/43/section/18

Section 22: http://www.legislation.gov.uk/ukpga/1993/43/section/22

Section 22A: http://www.legislation.gov.uk/ukpga/1993/43/section/22A

A model connection contract (for connecting facilities to our network – see also the Connection Contracts General Approval 2014) can be found on ORR's website

For a more detailed guide on moving your goods by rail, including 'getting your goods on the rail network', and 'Accessing the track and understanding the costs' please view our stakeholder guide here: Move my freight by rail - Network Rail.

3.3.3 Contracts with non-RU applicants

A non-RU seeking access to the network must enter into a Freight Customer Contract. This permits freight customers, for example logistics companies, seeking to secure track access rights but not operate a train themselves. Guidance can be found on ORR's website at: https://orr.gov.uk/ data/assets/pdf file/0003/27327/model-freight-customer-contracts-march-2019.pdf.

3.4 Specific Access Requirements

3.4.1 Rolling Stock Introduction, Modification and Cascade

Any party wishing to introduce a new vehicle onto the main rail network or make a change to the operation or engineering of an existing vehicle must consider the effect of this on all other RUs and on the IM. To aid RUs in the discharge of this duty, we engage in compatibility consultation processes which provide a structured mechanism for assessing and agreeing any capacity, safety, regulatory and commercial issues that exist between the RU, the IM, and other RUs. Consultation is required for:

- (a) introduction of new rail vehicles
- (b) extension of route(s) for existing vehicles
- (c) alterations to vehicles or changes to their operation which may affect compatibility
- (d) addition of vehicles with route clearance to vehicles permitted under a track access contract.

There are two processes involved:

- A demonstration of compatibility between a vehicle and the routes over which a RU wishes to operate it, as per <u>Railway Industry Standard RIS-8270-RST</u>, resulting in a Summary of Compatibility once agreed with Network Rail (Network Rail Assurance Panel) via the Route Compatibility Team.
- Vehicle Change (<u>Part F of the Network Code</u>) which deals with the commercial issues associated with the introduction of new vehicles, or new routes for existing vehicles.

We are obliged to consult and publish network change proposals that have an effect on the operation of the network or on the trains that operate on the network.

In all the cases (α - d) outlined above, the vehicle change process must be completed. The demonstration of compatibility process is required only where the introduction of α new train, change to α train with potential to affect compatibility with infrastructure or other RUs, or the extension of route(s) for existing types of trains is planned.

In addition to this, RUs must arrange for new vehicles to meet the requirement of all relevant standards and legislation. Provision of evidence produced in relation to Authorisation under the Railway Interoperability Regulations may support an efficient compatibility assessment where vehicles and infrastructure are harmonised.

Information on the authorisation process is found on **ORR's website**.

Full details on rolling stock compatibility and change processes (including the timetable for completion of the process) can be found on our website, as part of our 'Stakeholder Relations Code of Practice - Introducing new vehicles or changes to vehicles' document:

https://www.networkrail.co.uk/industry-commercial-partners/information-operating-companies/stakeholder-code-practice/

An important consideration for the introduction of new rolling stock is its dynamic fit within the loading gauge of the network – that is, the physical space provided above rail level by structures such as tunnels, bridges and platforms.

Information regarding loading gauge is available in engineering standards and the Sectional Appendix. However, owing to the complexity of the subject, any party considering introducing new or modified vehicles is advised not to rely solely on written sources to guide their design. It is essential that they make early contact to discuss their plans and seek guidance from the Route Compatibility Team.

When new or modified freight locomotives and wagons are being brought onto the network it is important not to make assumptions regarding the extent to which standard gauges may be relied upon. Further information regarding standard gauges and the gauging process in general can be found on the <u>RSSB website</u>. It must be noted that gauging is only one of the interfaces which must be considered for compatibility; detail can be found in RIS-8270-RST on the RSSB website.

Further information regarding interoperability, ORR's role as the National Safety Authority and the authorisations it grants can be found on <u>ORR's website</u> and the <u>DfT's website</u> regarding Interoperability and standards.

We have our own test track and innovation centre with facilities that can assist with many aspects of new vehicle testing and introduction:

https://www.networkrail.co.uk/industry-commercial-partners/research-development-technology/ridc/

Network Rail also produces the Strategic Capacity Statement, which details the strategic paths that are identified for potential future use on key routes on Network Rail infrastructure.

The Secretary of State appointed Network Rail Infrastructure Limited as the registration entity, who is responsible for maintaining the National Vehicle Register (NVR) for Great Britain. When a vehicle is placed into service for the first time, the registration holder is responsible for notifying details of the ECM to the registration entity.

Regulation 18A(1) of ROGS states that no person may place in service or use a vehicle on the mainline railway unless that vehicle has an ECM assigned to it, and that ECM is registered as such in the NVR. If an ECM is responsible for freight wagons, it must also obtain an ECM certificate. If you are not sure whether a vehicle has an ECM assigned to it, please contact the Registration Entity.

NVR Registration Entity Network Rail, The Quadrant:MK Elder Gate Milton Keynes MK9 1EN Tel: +44 (0) 1908 781 346

Email: NVR@networkrail.co.uk

3.4.2 Staff Acceptance

RUs and IMs are responsible for ensuring that staff that are involved with or affect the movement of trains are competent to perform their duties. The competence requirements that are described and mandated in Railway Group Standards, which are supported by Approved Codes of Practice and Guidance Notes, are devised and published by the Rail Safety and Standards Board (for contact details, please see Section 1.6) and are available on its website.

ORR has published <u>guidance on developing and maintaining staff</u> <u>competence</u>.

Train Driving Licences

<u>European Commission Directive 2007/59/EC (on the certification of train drivers) (the Directive)</u> was transposed into domestic legislation by the <u>Train Driving Licences and Certificates Regulations 2010 (TDLCR)</u> which entered into force in March 2010.

The requirement to hold licences and certificates issued in accordance with TDLCR has come into effect for new cross-border and domestic drivers. The application and authorisation process is managed by ORR; further details can be found on its website.

3.4.3 Exceptional Transport

Special conditions of travel need to be applied to certain vehicles or loads because of their size, weight or other unusual features. These conditions may include speed restrictions, train marshalling restrictions and/or special instructions for passing trains on adjoining lines and are determined individually by comparing the consignment with the characteristics of the route over which it is to travel.

In Great Britain, the operational rules for special transport are set out in Railway Industry Standard RIS-3781-TOM with requirements for the

operation of freight trains and the conveyance of dangerous goods by any train. Standards RS524 provide a list of dangerous goods and their United Nations Numbers which are accessible through RSSB's website at: http://www.rssb.co.uk.

This requires us, in conjunction with the RU, to:

- a) determine a route which enables the traffic to pass;
- b) determine what conditions of travel have to be applied;
- c) organise production of a Special Train Notice for the movement; and
- d) engage the services of a competent loads inspector if appropriate.

The Rail Industry Standard and Rule Book Modules set out how the special conditions are determined and managed.

The documentation required to permit an exceptional load to travel on the network is an 'Exceptional Load Form' (reference: GERT8000 TW4 Issue 2). The RT3973 form is needed not only to permit exceptional loads to travel. It is also necessary for the regular transit of most vehicles with their loads in the following categories (which encompass the majority of loaded freight trains):

- RT3973HAW Heavy axle weights (over the weight specified by the RA of the route)
- RT3973CON Containers and swap bodies
- RT3973NUC Nuclear flask trains (loaded or discharged)
- RT3973EXL Other exceptional loads requiring signaller intervention not covered by above types of form

The <u>Freight Documentation Support</u> team hold a register of every valid RT3973 form and are the first point of contact when communicating with the RUs. The team manage issuing out and administration of

RT3973 forms as well as converting RT3973/EXL forms into Conditions of Travel for usage by signallers for X-Headcode trains.

Please see also <u>Section 2.3.4</u> regarding loading gauge, <u>Section 4</u> regarding capacity allocation process and <u>Section 7</u> for details of other services provided by the IM.

RNE has a process for international RUs to supply the OSS (see Section 1.7.2) with technical data to establish with IMs the special conditions to be applied, and to agree either to accept the consignment into a compatible train path or to provide a specially-designed train path.

3.4.4 Dangerous Goods

These are goods which can pose a risk to health, safety, property and the environment during carriage by rail and are classified according to the Regulations concerning the International Carriage of <u>Dangerous Goods</u> <u>by Rail (RID) 2024</u>. Amended and supplemented requirements are set out in Annex II to EU Directive 2008/68/EC and to the Convention concerning International Carriage by Rail.

The national regulations are The Carriage of Dangerous Goods and Use of Transportable Pressure Equipment Regulations 2009 (see http://www.hse.gov.uk/cdg/regs.htm), and http://www.hse.gov.uk/cdg/regs.htm), and http://www.hse.gov.uk/cdg/regs.htm), and http://www.hse.gov.uk/cdg/regs.htm), and http://www.hse.gov.uk/cdg/regs.htm), and the Carriage of Dangerous Goods: Approved Derogations and Transitional Provisions which refer to RID for much of the detailed requirements. Both sets of regulations apply to participants in the transport chain including IMs and RUs.

Various Railway Group Standards and documents deal with dangerous goods and complement these regulations:

GERT8000 TW4 Issue 2 Preparation and working of freight trains

GERT8000 G1 Issue 9.1 General safety responsibilities and personal track safety for non-trackworkers

This includes the RIS-3781 Issue 2 Requirements for the operation of freight trains and the conveyance of dangerous goods by any train, RS524 Issue 1.2 List of Dangerous Goods and their United Nations Numbers, GERT800 TW4 Issue 2.

In addition, Part E of the Network Code requires notification where a RU proposes to transport materials on the main rail network that are likely to cause environmental damage in the event of escape.

Dangerous goods are transported by those RUs whose general safety management system arrangements have been approved by ORR through the safety regime (ROGS). See <u>Section 1.3</u> for more information on ROGS.

The movement of dangerous goods traffic by rail is undertaken in both train load formations and mixed freight load, both subject to certain controls derived from the regulations and standards mentioned above.

We co-operate with RUs by taking all reasonable actions for the safe and secure movement of dangerous goods traffic.

For details on the process for allocating capacity for the transport of dangerous goods, see <u>chapter 4.7</u> and for the relevant services see chapter 5 and chapter 7. Please also see <u>Section 5.4</u> for details of the person to contact regarding applications to move dangerous goods.

3.4.5 Test Trains and Other Special Trains

All Special Trains are managed in-line with Network Rail Group Standards and national frameworks which govern operational and security requirements. This is managed through the Head of Infrastructure Access

For advice on Special Trains please contact:

Simon Wilkinson
Professional Head of Infrastructural Access Network Rail
The Quadrant:MK
Milton Keynes, MK9 1EN
Email: Simon.wilkinson@networkrail.co.uk

For advice on Dangerous Goods please contact:

Martin Bloomfield
Principle Train Operations and Dangerous Goods Manager (DGSA Rail)
Network Rail
The Quadrant:MK
Milton Keynes, MK9 1EN
Email: martin.bloomfield@networkrail.co.uk

Chapter 4 – Capacity Allocation

4.1 Introduction

We are responsible for the overall timetabling process on our part of the GB rail network. RUs provide us with details of the trains they wish to run on the network, and we co-ordinate these capacity requests into a working timetable.

RUs have specific rights to be allocated capacity; These are set out in a Schedule (usually Schedule 5) to each track access contract. Provision is also made for those who aspire to obtain a track access contract to have access to capacity information. This is to assist them in obtaining the necessary track access contract and train slots in the timetable (see Section 3.2.1).

Requests for traction power supply capacity allocation are outside this process and are managed separately by each of the Network Rail regions. Please note that not all routes have a traction power system sized to accommodate the track capacity.

Template form for requests for capacity

We have developed a template form which can be used by RUs when making Capacity Requests which can be found on <u>our website</u>.

4.2 General Description of the Process

How capacity is allocated when building the timetable is set out in <u>Part D of the Network Code</u>, Condition 2 (please see <u>Section 3.2.1</u>).

Where international train slot requests are concerned, RNE has provided for a harmonised timetabling process across Europe. RNE's handbook sets out how RUs and other applicants can request and obtain international train slots. Information is available via the RNE website

Customers with international train slot requests may also take advantage of the OSS arrangements described in <u>Section 1.7.2</u> and referenced in the Network Code Part D.

4.3 Reserving Capacity for Temporary Capacity Restrictions4.3.1 General Principles

Please refer to <u>section 4.2</u> for details of the capacity allocation process, the coordination procedure that applies and place of publication.

4.3.2 Deadlines and Information Provided to Applicants

Information relating to traffic restrictions is covered in Table D of the Sectional Appendix. This deals with each of the route sections as set out in Table A of the same Sectional Appendix (see Section 2.3).

As part of the timetable production process set out in <u>Part D of the Network Code</u>, we produce <u>the Engineering Access Statement</u> which sets out the times when we could or will take possession of the line, referred to as 'Restrictions of Use'.

Engineering Access Statement

The Engineering Access Statement sets out the rules regulating the arrangements for access to the various parts of the main rail network, when affected by inspection, maintenance, renewal and other works.

The Engineering Access Statement consists of two parts. The first part is a short National Overview; which sets out the planning rules, for the primary benefit of those who require engineering (as opposed to train) access to the network. The second part contains route-specific information and provides details of planned surrender of use of the network due to maintenance, renewal and enhancement work. The contents can be summarised as follows:

- Section 1 Introduction to the document and processes within.
- Section 2 Glossary of terms, helping users to understand terminology and acronyms used.
- Section 3 Guidelines for Granting Possessions, sets out what information is required when requesting a possession, how to request late notice possessions and dates for submissions.
- Section 4 Standard Possession Opportunities, set out, for the benefit of those requiring access to the line for inspection, maintenance and renewal, those times when there are no trains planned to run in the working timetable or when the working timetable supports trains running over a reduced number of lines, and when, therefore, access is usually available.
- Section 5 Strategic Maintenance, sets out details of engineering activity which is planned on a cyclical basis (activities that are repeated at planned regular intervals) and may require some changes to trains contained in the working timetable.
- Section 6 describes the introduction of the Access Impact process to be followed to enable agreement between Network Rail and Timetable Participants for delivering Capacity Study requests relating to the Engineering Access Statement.
- Section 7 Register of Disruptive Possessions, sets out details of the temporary closure of parts of the network required to deliver maintenance, renewals and project works which will impact on trains contained in the working timetable. Details include dates, times, locations, lines affected in respect of possessions, temporary speed restrictions, temporary methods of working and any other restrictions of use.

Different Sections of the Engineering Access Statement are published at different times of the year.

Sections 1, 2, 3, 4 and 6

These Rule changes are consulted annually for each Timetable period. For the December Timetable this starts at D-64 (19 September 2025). Version 1 is issued as a draft at D-59 (24 October 2025) and Version 2 issued as a final version at D-44 (6 February 2026), in readiness for the start of the timetable development process at D-40 (6 March 2026). For the May Timetable a Version 3 is issued as a draft at D-59 (27 March 2026), with Version 4 issued as a final version at D-44 (10 July 2026). RUs comment to us on Versions 1 and 3. We consider these comments and decide whether to include amendments in Versions 2 or 4.

Sections 5 and 7

Sections 5 and 7 are referred to as the Advanced Register of Possessions and form part of the Engineering Access Statement. These Rule changes are still consulted annually but are aligned to Financial Half Years (April – October and October – March) and are represented by "F-X" dates.

To cover the Timetable Year commencing in December 2026 and for dates up to March 2027, the following dates are applicable.

A draft Advanced Register of Possessions covering December 2026 to March 2027 will be published at F-59 (15 August 2025). A final version will be published at F-46 (14 November 2025).

For the first half of the 2027 – 2028 Financial Year (4 April 2027 to 2 October 2027), Version 1 is issued as a draft at F-59 (13 February 2026) and Version 2 issued as a final version at F-46 (15 May 2026). For the second half of the Financial Year (3 October 2027 to 1 April 2028) a Version 3 is issued as a draft at F-59 (14 August 2026) and Version 4 is issued as a final version at F-46 (13 November 2026). RUs comment to

us on Versions 1 and 3. We consider these comments and decide whether to include any amendments in Versions 2 or 4.

Decisions are taken in accordance with the decision criteria of <u>Condition</u> <u>D4.6 of the Network Code</u>. Most decisions are subject an appeal.

The <u>Engineering Access Statement</u> is published on our website as part of the 'Operational Rules'.

4.4 Impacts of Framework Agreements

A Framework Agreement (or track access contract) is an agreement between Network Rail and a RU which specifies the capacity to which the RU is entitled (access rights) for a period in excess of one year. Access rights can be firm or contingent. The New Working Timetable, as described in Section 4.5.1 must be consistent with the exercised firm rights of RUs, provided that they have been exercised at or before the relevant Priority Date. We must also attempt to accommodate all access proposals supported by contingent rights but firm rights always take priority. If it is not possible to accommodate all access proposals then train slots will be allocated in the following priority order, as set out in Part D4.2 of the Network Code, subject to us exercising our flexing rights:

- Firstly to firm access rights exercised at the priority date which cover the whole of the timetable period, together with any rights which we have for Network Services that are contained within the Rules.
- Secondly to firm access rights exercised at the priority date which cover part of the timetable period including those where the RU is expected to obtain new firm rights covering the remainder of the timetable period

- Thirdly to contingent rights or any expectation of rights exercised at the priority date
- Fourthly to any access proposals submitted after the priority date, and Strategic Slots in the Strategic Capacity Statement.

4.5 Path Allocation Process

4.5.1 Annual Timetable Path Requests

The Access and Management Regulations require that timetable changes occur on the same day across Europe. Our annual timetable starts on the Sunday immediately after the second Saturday in December. This is known as the principal timetable. A new updated timetable is published each May. This is known as the Subsidiary timetable.

The 2027 Principal timetable runs from Sunday 13 December 2026 to Saturday 15 May 2027, and the Subsidiary timetable runs from Sunday 16 May 2027 to Saturday 11 December 2027.

The key dates for the production of the 2027 Principal Timetable (December 2026 change date) are set out in <u>Annex 2</u>.

Following the priority date (Friday 6 March 2026 for the Principal timetable and Friday 7 August 2026 for the Subsidiary timetable), we work for a period of 14 weeks to construct the New Working Timetable. We seek to deliver the RUs' aspirations but must construct the timetable in accordance with the priorities and Decision Criteria which are set out in Part D of the Network Code. These decision criteria specify our obligation to define how we determine allocation priorities in accordance with Regulation 29 (3) of the Access, Management and Licensing Regulations. The New Working Timetables for 2027 will be published on 12 June 2026 and 13 November 2026. RUs have a right of appeal if they are dissatisfied with our decisions.

Future access options

A Framework Agreement (for this purpose, a track access option) can be entered into with us by a body seeking access to the main rail network at some future stage to operate trains for which specific infrastructure must be provided (e.g. additional passing places on a single line) before the services in question can operate. Such commitments (either provided wholly or jointly by us or the body seeking such access) will be subject to ORR's approval of the option agreement in question.

Schedule for Working Timetable

Each year at D-73 (18 July 2025) before the principal timetable change date we publish a schedule of dates for timetable production. This is set out in Annex 2 to this Network Statement. The Network Code sets out when each step should be completed by D-x. Each new timetable starts at D-0 so D-1 is at 17:00 on the Friday one week before the timetable change. The various steps then number back from this point.

We produce a more comprehensive document³ setting out all the dates and stages involved in creating the principal and subsidiary timetables and the weekly amended timetable process. Copies of this document are supplied free of charge to all people and organisations who participate in the capacity allocation process. Initial copies are available from the address shown in Section 1.6 and on our website.

Potential RUs are advised to contact us to obtain further information about the timetabling process.

Risk Assessment and Briefing of Timetable Change

The timetabling process includes a detailed review and assessment of forthcoming changes to the timetable introduced in December and May

each year. It also considers the effects of past changes including feedback on actions and looks ahead to the implications of change aspirations proposed to take place beyond the next timetable.

The System Operator PMO organisation was introduced following the May 2018 Timetable change to provide longer term review and risk assessment of systematic and upcoming timetable change.

The Timetable Change Risk Assessment Group (TCRAG) chair reviews all timetable changes for their significance and determines the appropriate level of assessment to be carried out based on local knowledge and information.

The Timetable Change Assurance Group (TCAG) carries out a high-level assurance check to monitor the activities of TCRAGs and also reviews aspirations for change beyond the next timetable.

TCRAG may also be required to assess major engineering works (e.g. blockades) and key business change activities in advance of any prescribed timetable being available. TCRAGs of this type may be held a significant period before such a change may take place and may use service specifications forecasts to allow the assessment to be undertaken. This may include service specifications developed by Events Steering Group (ESG).

TCRAG chairpersons shall review the Calendar of Events and the associated list of ESGs which detail where timetables may be changing.

The dates associated with this process may be found in Annex 2.

³ Operational Planning Production Schedule.

4.5.2 Late Annual Timetable Path Requests

The processes by which access proposals received between D-40 and D-26, and variations requested received after D-26 are described in the Network Code Conditions D2.4.4 and D3.3, including the response timescales in respect of the latter. In respect of access proposals received after D-40 but before D-26 the requester will receive a response by D-26 to the extent reasonably practicable, as outlined in the Network Code Condition D2.4.4. There are no timescales pertaining to specific responses to any given access proposal between D40 and D-26. Network Code Condition D2.6 refers.

4.5.3 Ad-Hoc Path Requests

After the new Working Timetable is published (D-26) RUs may wish to obtain additional train paths or amend any of their train paths already included. These changes are called Timetable Variations and the process for dealing with them is set out in Condition D3.1 of the Network Code.

In line with our obligations under the Access, Management and Licensing Regulations and our network licence, our procedures for dealing with requests for capacity allocation (including ad hoc requests) are designed so that we treat all current and potential RUs (including freight operators and the operators of international services) in a fair and non-discriminatory way.

RUs can make ad hoc requests for capacity under Condition D3.3 of the Network Code to meet variations in traffic and can be handled through the train planning process down to 48 hours' notice.

Variations within the last 48 hours before operation are handled by our Operational Controls.

Changes for engineering work under Condition D3.4 are planned on a weekly basis with the objective of having a confirmed timetable twelve

weeks in advance of operation which can then be used, with confidence, by RUs, and for their passengers to plan their journeys.

However sometimes we have to undertake short notice possessions. These are dealt with under Condition D3.5 of the Network Code.

4.5.4 Coordination Process

The coordination process regarding requests for infrastructure capacity referred to in Regulation 23 of the Access, Management and Licensing Regulations is set out in Part D Condition 2 of the Network Code.

We liaise with all RUs to identify significant events that will be taking place during the early part of CP7 and record this in a Calendar of Events. An event is a major change which may require alteration to an existing timetable that is more extensive than usually occurs during the bi-annual timetable change. Smaller changes that do not qualify as events are recorded and distributed using the same approach. Any RU may propose that a change be defined as an Event. These changes are managed through an Event Steering Group established in accordance with Network Code Condition D7. From 2021 the Calendar of Events moved to a publication schedule of four releases in a calendar year, not linked to the timetable production schedule.

We published a <u>Strategic Capacity Code of Practice</u>. This sets out how we will produce the <u>Strategic Capacity Statement</u>, which details the strategic paths that are identified for potential future use on key routes on our infrastructure. The <u>Strategic Capacity Statement</u> for the 2027 Principal Timetable is due to be published at D-45 (31 January 2026).

Timetable Planning Rules

The Timetable Planning Rules set out the building blocks of the timetable. They include items such as sectional running times (the time trains take between two points) and headways (the time interval between two trains on the same track).

The <u>Timetable Planning Rules</u> contain two parts: a National Overview and route-specific sections, containing wide-ranging information required to undertake the compilation of the timetable.

The methodology for the <u>Timetable Planning Rules</u> change (located within the National Rules section of each version of the Timetable Planning Rules) contains a 'plain English' description of the timetable planning process, together with details of the planning schedule and requirements to be met in RUs' requests for train slots. It also contains a procedure for the agreement of short-term changes to the Engineering Access Statement and Timetable Planning Rules.

The route-specific sections contain information regarding mandatory timing points⁴, sectional running times calculations⁵ for specific train types, headway⁶ and margin⁷ limits to be maintained between trains, station working rules⁸ and route capability data.

They set out the rules regulating the standard timings between stations and junctions together with other matters enabling trains to be scheduled into the working timetable for the various parts of the main rail network.

RUs planning significant new services or significant amendments to their services that are not considered events must notify us at the earliest

opportunity and when possible before D-55 (21 November 2025 for the 2027 Principal timetable, 24 April 2026 for the Subsidiary timetable). We then work on advanced proposals from D-55 to the Priority Date at D-40. The latest schedule of dates for the timetabling process can be found in Annex 2.

RUs wishing to amend their services should send us an access proposal. Access proposals received by the priority date at D-40 (06/03/2026 for the Principal timetable, 07/08/2026 for the Subsidiary timetable) have a higher priority than those received after the priority date. If RUs wish to run new services they should state if they have unused access rights they wish to exercise, or if they intend to obtain new access rights. Services that are unchanged by an access proposal will continue in the timetable as a rolled over access proposal. Both the terms 'access proposal' and 'rolled over access proposal" are defined within Part D of the Network Code.

Once we have all the access proposals and all the rolled over access proposals we will coordinate all the Train Slots within the timetable, so that each train is compliant with the Timetable Planning Rules. This takes place between D-40 (6 March 2026) and D-26 (12 June 2026) for the Principal timetable, and D-40 (7 August 2026) D-26 (13 November 2026 for the Subsidiary timetable). The New Working Timetable is published at D-26. If we are unable to find compliant slots for all Access Proposals and rolled over Access Proposals we will allocate Train Slots in the priority order as set out in Network Code D4.2.

If we have to make a decision on how to timetable train slots with the same level of priority we will do so using the decision criteria, comprising

⁴ Locations where all trains travelling on a specific line or in a specific direction are required to be timed at this location.

⁵ The amount of time, based on the characteristics of haulage capacity and trailing weight, required to pass and/or stop at any two consecutive standard timing points or stations.

⁶ The planning headway is the minimum planned time interval between two successive train schedules at a specific timing point on the same line in the same direction, such that the second train can meet its SRT.

⁷ The minimum period of time which must elapse between any two trains where one train must cross the path of the other. This is generally required at junctions and on the approach to main (multi-platform) stations.

⁸ The minimum permissible time interval between two trains that are performing conflicting moves at a timing point, such that the second train can meet its SRT.

of the Objective and the Considerations, below, which are defined in <u>Part D</u>, <u>Condition 4.6 of the Network Code</u>:

- (a) maintaining, developing and improving the capability of the Network
- (b) that the spread of services reflects demand
- (c) maintaining and improving train service performance
- (d) that journey times are as short as reasonably possible
- (e) maintaining and improving an integrated system of transport for passengers and goods
- (f) the commercial interests of Network Rail (apart from the terms of any maintenance contract entered into or proposed by Network Rail) or any Timetable Participant of which Network Rail is aware
- (g) the content of any relevant Long-Term Plan and any relevant Development Timetable produced by an Event Steering
- (h) that, as far as possible, International Paths included in the New Working Timetable at D-48 are not subsequently changed
- (i) mitigating the effect on the environment
- (j) enabling operators of trains to utilise their assets efficiently
- (k) avoiding changes, as far as possible, to a Strategic Train Slot other than changes which are consistent with the intended purpose of the Strategic Path to which the Strategic Train Slot relates
- (I) no International Freight Train Slot included in section A of an International Freight Capacity Notice shall be changed.

These decision criteria allow Network Rail to take a range of factors into account when determining priorities in relation to the use of train slots. Those factors may include previous levels of utilisation of capacity as referred to in Regulation 29(3) of the Access, Management and Licensing Regulations.

4.5.5 Dispute Resolution Process

Timetable panel

RUs have certain rights of appeal in respect of decisions made during the timetabling process. These appeals are heard by a specialist Timetable Panel established by the Access Disputes Committee, an independent body with a majority of members elected by RUs (for contact details, please see <u>Section 1.6</u>).

Appeals are governed by Condition D5 of the Network Code together with the Access Dispute Resolution Rules (see below). These rules provide the framework within which the Timetable Panel may request information for the purposes of determining how a dispute may be resolved.

Referrals to the Panel must be made within the periods prescribed by Condition D5, which range from five to 25 working days. The dispute procedures are designed to avoid or minimise impact on the timescales of the timetabling process. Determinations of the panel may be subject to a further level of appeal to ORR.

Access Dispute Resolution Rules (ADRR)

The ADRR set out options for resolution of disputes which arise out of particular commercial contracts. The purpose of the ADRR is to provide a clear, coherent, and effective structure for dealing with disputes that arise from access contracts and the Network Code (including Network and Vehicle Changes but excluding timetabling disputes unless there are compelling reasons why it should not be allocated to the timetable panel).

Further information on the ADRR can be found at the <u>Access Disputes</u> <u>Committee website</u>. As well as containing useful guidance documents and other explanatory information on the use of the ADRR, this website also contains details of dispute panel determinations.

Disputes relating to performance are managed in accordance with the specific provisions of the performance regime itself (set out in full in Schedule 8 of each track access contract), which enables prompt resolution directly between the access contract parties. Parties may also seek guidance from the cross-industry Delay Attribution Board, established under Part B of the Network Code. In the event that a dispute remains unresolved through these channels, then the ADRR provisions apply.

4.6 Congested Infrastructure

We have established principles and procedures that we use to discharge our obligations to identify and manage congested infrastructure. This is set out in our published <u>Code of Practice</u>. A <u>Register of Congested Infrastructure</u> is also maintained and published and will contain the most up to date information regarding these matters.

Currently there are six areas of declared congested infrastructure. These are detailed below:

Castlefield Junction to Manchester Piccadilly East Junction inclusive (The 'Castlefield Corridor')

The route was declared as congested infrastructure in April 2019 based on consideration of access proposals received in 2019.

The key constraint identified was "The Castlefield Corridor", the route between Castlefield Junction and Manchester Piccadilly platforms 13 and 14. This is a major pinch-point on the route due to the number of different services having to be funnelled onto a two-track section of railway. This both limits timetabling options for the area and magnifies delays, potentially affecting services across the Pennines and on to the East Coast Main Line as well as services to and from Scotland via the West Coast Main Line, services to the Midlands via the Hope Valley route, and finally all the local and regional services in the North West. The

structure of the Manchester Recovery Task Force timetable was introduced from the December 2022 timetable change. The December 2022 timetable change meant that previously operated services have been removed in order to reduce frequency through Central Manchester and support reliable service provision. The Manchester and North-West Transformation Programme (MNTP) is designed to deliver capacity improvements that allow these services to operate fully, whilst also providing scope for future enhancements such as train lengthening and reliability improvements that will benefit both Manchester and the wider North of England.

As part of the overall programme to improve rail infrastructure in Manchester, MNTP has Configuration States (CS) with December 2022 as CS1. The next stage is CS2 which will deliver electrification and reliability improvements on the north side of Central Manchester. A timetable is in development for CS2 that delivers a number of capacity and reliability improvements, following recommendations by the Manchester Task Force, aiming for a 2026 timetable change.

These infrastructure works are essential as enablers to facilitate a coordinated change in train services for CS2.

CS3 is the next phase of work, which requires significant construction works at key locations in the late 2020's/early 2030's, with more complex interventions requiring significant investment. Works planned as part of CS3 include:

- Platform lengthening works at Manchester Airport that allow trains running through Central Manchester to be lengthened, and to operate TransPennine Route Upgrade (TRU) services.
- Capacity and re-signalling works at Manchester Oxford Road.

The CS3 Development Timetable increases services levels from 12 to 14 TPH through Castlefield Corridor, extending the current Southport-

Manchester Oxford Road to Manchester Airport via Ordsall Chord and returning to an all day 2 TPH stopping service on the CLC line. The CS3 infrastructure changes at Manchester Airport and Manchester Oxford Road are required as enablers for this uplift in services.

These infrastructure works are essential as enablers and are required to facilitate a co-ordinated change in train services between the Castlefield Corridor and Manchester Airport.

As part of CS3, there is also work planned at Manchester Piccadilly platforms 13 and 14, which is the replacement of the existing footbridge, with improved stair and lift provisions, in conjunction with improvement to CIS and "de-cluttering" of the platforms.

West Coast Main Line South Fast Lines (Camden South Junction to Ledburn Junction inclusive)

Designated as congested infrastructure with effect from 11 May 2020, on the basis of an expectation that all access proposals in respect of the December 2020 Timetable Period would not be accommodated. Further information is provided in the capacity study published in November 2020. The study concluded that there is no available capacity on these lines without significantly impacting performance and causing a reduction in timetable resilience. The quantum provided by the December 2022 WCML recast timetable structure through the Event Steering Group continues to ensure there is balance between capacity and a timetable that performs and has resilience. In 2024, subsequent applications were received for additional access rights utilising Fast Line capacity on this section of route which was over and above the quantum developed as part of the December 2020 Event Steering Group timetable. These applications could not be supported. Work remains ongoing in relation to the Capacity Enhancement Plan published on 10 May 2021.

Wrexham to Bidston

This section of route was declared as "congested" based on consideration of access proposals received for the December 2021 and May 2022 timetable periods, which we were unable to accommodate. Key constraints have been identified with the infrastructure, which does not lend itself to regular, patterned, mixed use running. In particular, long absolute block headway sections, a slow running speed and a single line section between Wrexham Exchange Junction and Wrexham Central restrict capacity. The status of the line remains the same until the enhancement works are completed which were part of the recommendations in the Congested Infrastructure report published on 31 January 2023. The Capacity Enhancement Plan was published on 31 July 2023.

East Coast Main Line

The ECML is facing a long-term issue of demand from operators exceeding available capacity. There are particular pinch points on the ECML including Kings Cross, Welwyn, Doncaster and the double tracks on northern sections. There are also increased passenger services to meet requirements (LNER, TPE, GTR), ORR directions for open access operators and competing freight demands. Under the Integrated Rail Plan, a number of interventions are planned to provide additional capacity or improved performance north of York.

As a result of the special access policy, Network Rail have issued an <u>Early Indicator of Likely Congestion in relation to the East Coast Main Line</u>. This notice is non-binding and advisory only, with no legal or contractual status and does not trigger the requirement for Network Rail to undertake either a Capacity Analysis, or a Capacity Enhancement Plan.

This notice was initially issued on 5 July 2024 in relation to the network:

- Between Huntingdon North Jn and New England Jn (Peterborough)
- Between Doncaster Marshgate Jn and Leeds Copley Hill West Jn
- Between Northallerton Longlands Jn and Newcastle King Edward Bridge South Jn
- Between Newcastle East Jn and Monktonhall Jn (Edinburgh)

On 14 March 2025, three areas (excluding Edinburgh) became formally declared as Congested Infrastructure. The formal notices are published here. These declarations were made on the basis that during the preparation of the Working Timetable for the December 2025 timetable, Network Rail considered that these elements of the railway infrastructure were likely to become congested during that timetable period. The Capacity Analysis was published on 14 September 2025 and the Capacity Enhancement Plan is due for publication on 14 March 2026.

North West & Central Region

Network Rail have issued <u>three Early Indicators of Likely Congested</u> <u>Infrastructure</u> for the following sections of the network:

- Acton Lane
- Willenhall
- Crewe/Weaver Liverpool

Each of these have been issued in relation to concerns over the available draw on electric traction capability of these sections of the network. These notices are non-binding and advisory only, with no legal or contractual status and do not trigger the requirement for Network Rail to undertake either a Capacity Analysis, or a Capacity Enhancement Plan. These notices were issued on 9 July 2024.

Additional declarations

Network Rail seeks to manage its obligations to ensure efficient use of capacity and by following Network Code Part J regarding the use of any such Access Rights. Additional demands for capacity could see the network grow busier, increasing the probability of making declarations of congested infrastructure. The information in this statement is up to date at the point of publication. We will consider declarations in respect of each timetable planning cycle and will make consequential amendments to the Register of Congested Infrastructure on our website. Industry parties will be informed directly as appropriate.

Anglia Route - Emerging Capacity and Risk

Network Rail has identified several areas where capacity constraints and operational pressures may lead to future declarations of congested infrastructure. These include level crossing risks on the West Anglia Main Line (WAML) and North Thameside (c2c) routes, as well as the potential impact of increased freight movements on North Thameside (primarily Thames Gateway), with the associated level crossing risks currently being tested. The Cambridge station area is also under review, particularly in light of the East Coast Main Line (ECML) adoption (noting the ECML timetable change is dependent on realising the benefits from Cambridge South) and the long-term development of East West Rail. Our emerging assessments for the Great Eastern Main Line (GEML) also show the potential for capacity constraint should forecast passenger growth (and a corresponding increased need for services) be realised in the medium to long term.

Anglia Route - Additional capacity concerns

Further areas of concern include the North London Line (NLL), which continues to experience significant operational pressure, and the West London Line, particularly with the introduction of new shuttle services (along with the proposed West London Orbital which has interfaces with the NLL route). These routes will continue to have frequent freight services operating from Felixstowe and Thameside ports, as well as construction and aggregate traffic supported by housebuilding and the delivery of critical national infrastructure. The Gospel Oak to Barking line (T&H) is also under pressure due to rising freight volumes and engineering activity. The Cross Country route between Haughley and Peterborough Junction is facing increased demand from both passenger and freight services, compounded by legacy signalling, extended headways, a single-line section at Soham, a single-lead junction at Haughley and the current layout at Ely. In the Norwich area, operational limitations are exacerbated by restricted stabling facilities and power supply constraints. Additionally, the East Suffolk Line, particularly in relation to Sizewell may warrant further review.

4.7 Exceptional Transports and Dangerous Goods

A RU which wishes to run exceptional or dangerous goods should apply to us for slots sufficient to accommodate the passage of those goods within the process described in this document. RUs will need to agree and have issued an RT3973 form where applicable to control the access to infrastructure.

Prior to any application, in the first instance it is the responsibility of the RU transporting the relevant goods to maintain compliance with all relevant legislation including UK and European law. We will afford any new RU assistance in compiling the necessary risk assessments together with advice on suitable routes. Only once these assessments have been

completed can an access request be submitted. See also <u>Section 3.4.4</u> and Section 5.4

4.8 Rules After Path Allocation

4.8.1 Rules for Path Modification by the applicant

Requests for path variation are governed by Condition D.3 of the <u>Network Code</u> – please refer to that section for details.

4.8.2 Rules for Path Alteration by the IM

Requests for path variation are governed by Condition D.3 of the <u>Network Code</u> – please refer to that section for details.

4.8.3 Non-Usage Rules by the applicant

Part J of the Network Code, which is incorporated into Framework Agreements, provides a means by which access rights may be removed in the event that a RU fails to use them, unless this failure is due to non-economic reasons beyond the RU's control. This mechanism is detailed within Part J Condition 4 of the Network Code. The specific threshold quota required by Regulation 29 of the Access, Management and Licensing Regulations is specified by Part J4.2 of the Network Code but should be read in conjunction with the entirety of Part J.

4.8.4 Rules for Cancellation by the applicant

Where one RU is replacing another in the provision of transport services to a third party for the carriage of goods, a process in <u>Part J7 of the Network Code</u> allows for surrender and reallocation of access rights. This reflects AMR Regulation 29.

Chapter 5 - Services and Charges

5.1 Introduction

This chapter sets out the current charging principles for access to the main rail network.

The below market segments reflect the Access, Management and Licensing Regulations which states that the list of market segments defined by infrastructure managers shall contain at least the three following segments: freight services, passenger services within the framework of a public service contract and other passenger services.

The market segments applicable on our infrastructure are:

- publicly contracted passenger
- open access passenger: interurban
- open access passenger: major airports
- open access passenger: other
- charter services
- freight (segmented by commodity)

5.2 Charging Principles

CP7 Variable, Station & Fixed Charges price lists

We have <u>published</u> price lists for regulated track and station access charges consistent with ORR's Final Determination covering the period from 1 April 2024 to 31 March 2029.

The list of market segments is to be reviewed at least every five years and the regulatory body referred to in the Access, Management and Licensing Regulations shall control that list. ORR summarises decisions made as part of the 2023 periodic review process on charges and incentives in a supplementary document to the Final Determination. We

engaged closely with the industry throughout PR23, and published all of our consultation and conclusion documents on our <u>website</u>. These documents provide more detail in relation to how the different charges discussed below were developed for CP7; this period covers 1 April 2024 to 31 March 2029.

Credit Ratings

Prospective operators will need to assure us that they are financially and practically able to operate a successful train service. We will seek a formal credit rating for a RU, or for a parent company or financial backer, coupled with a bank guarantee to a value that will be set to cover our liabilities.

Further information on the assurances we require can be found in our Stakeholder Relations Code of Practice.

5.3 Minimum Access Package and Charges

Tariffs

This section sets out the different charges for access to the main rail network. They are based on the charging arrangements for Control Period 7 (CP7), determined by ORR and applicable from 1 April 2024 to 31 March 2029.

We levy a range of access charges on publicly contracted passenger, open access passenger (split into interurban, major airports and other services), charter and freight RUs. These charges may include:

- Variable Usage Charge;
- Electrification Asset Usage Charge;
- Traction Electricity Charge;
- Access Charge Supplements;
- Fixed Track Access Charge;

- Infrastructure Cost Charge; (including the Freight Specific Charge);
- Station Long Term Charge; and
- Additional Charges (e.g. additional signal box opening).

These access charges are discussed in more detail below.

The access charges are underpinned by the Minimum Access Package and Access & Management Regulations as discussed below.

Minimum Access Package

The 'minimum access package' comprises:

- (a) handling of requests for infrastructure capacity; and
- (b) the right to utilise such capacity as is granted and, in particular,
 - (i) such railway infrastructure including track, points and junctions as are necessary to utilise that capacity;
 - (ii) electrical supply equipment for traction current, where available and as is necessary to utilise that capacity;
 - (iii) train control, including signalling, train regulation, dispatching and the communication and provision of information on train movements; and
 - (iv) all other information as is necessary to implement or to operate the service for which capacity has been granted.

Information on the access charges and price lists for CP7 are available on our website, <u>CP7 access charges - Network Rail.</u>

Minimum Access Package for connected facilities

In relation to rail facilities that are not part of the main rail network, the provision of the minimum access package is the responsibility of the relevant service provider.

In developing the connected facilities details we have attempted to bring together information that goes beyond the physical location of connected facilities into a single resource (link below). Those service providers of connected facilities that have responded to our request for information have supplied, as a minimum, appropriate contact details. These details are available for any RU to use in order to obtain key information such as hours of operation, capacities and capabilities.

Information concerning connected facilities is available on our website.

Please note that this information has been provided to us by connected facility service providers. We do not operate these facilities and as such any queries should be addressed to the relevant service provider in the first instance.

If you are a service provider and you need to update the details that we hold, please download our <u>service provider information form</u> which can be returned by post or email. Parties requiring access to certain connected facilities (for example some light maintenance depots and stations) may need an access contract, as described in <u>Section 7.3</u> and <u>Section 2.5</u>.

Track Access Charges

This section discusses in detail the track access charges, including those that comprise the minimum access package that we levy on RUs.

Variable Usage Charge

The purpose of the Variable Usage Charge is to recover our operating, maintenance and renewal costs that vary with traffic. In economic terms, it reflects the short run marginal cost. Hence, it does not reflect the cost of providing or changing the capability or capacity of the network. The Variable Usage Charge is paid by publicly contracted passenger, freight, charter and railway undertakings.

The Variable Usage Charge is based on a bottom-up analysis of our incremental costs. First, the total variable costs associated with all traffic on the network are established. Then these costs are distributed between individual vehicles based on their relative propensity to cause damage to the network. This propensity is established from an analysis of the causes of wear and tear to the network, and the relative characteristics of different rolling stock types.

The higher a vehicle's axle load, speed, unsprung mass and yaw-stiffness, the more wear and tear the vehicle causes to the network. As such, the Variable Usage Charge reflects these characteristics.

Passenger and freight Variable Usage Charges are on a pence per vehicle mile and pound per thousand gross tonne mile basis. The rates for each vehicle type apply as uniform national rates.

For enquiring RUs, we can produce an estimate of the charge for a new vehicle type when provided with information such as the:

- tare weight
- number of axles
- unsprung mass
- yaw-stiffness
- maximum or operating speed of the vehicle
- seating capacity (passenger vehicles only)
- Ride Force Count (freight vehicles only)
- operating weight (freight vehicles only)

A calculator is also available on our <u>website</u> so that interested parties are able to estimate Variable Usage Charge rates themselves.

Whilst the basis of the calculation of Variable Usage Charges for freight is similar to that for passenger vehicles, there are some key differences.

Firstly, an adjustment is made to reflect the 'track friendliness' of the suspension of freight wagons. The purpose of this is to incentivise the use of suspension which will result in lower infrastructure costs.

Secondly, freight Variable Usage Charges vary depending on the commodity type being transported. The reason for this is that the operating speed and operating weight of a freight vehicle can vary materially depending on the commodity type being transported and this is reflected in the Variable Usage Charge. The list of freight commodity types used for charging purposes is set out, below:

- Biomass
- Chemicals
- Coal Electricity Supply Industry (ESI)
- Coal other
- Construction materials
- Domestic automotive
- Domestic intermodal
- Domestic waste
- Enterprise
- European Automotive
- European Conventional
- European Intermodal
- General merchandise
- Industrial minerals
- Iron ore
- Mail and premium logistics
- Other
- Petroleum
- Royal Mail
- Steel

Variable Access Charges are initially set in 2023/24 prices and then increased annually in line with the Consumer Prices Index (CPI) in accordance with access contracts.

Electrification Asset Usage Charge (EAUC)

The purpose of the EAUC is to recover the variable maintenance and renewal costs associated with our electrification assets e.g. OLE network and the DC network (third rail).

The charge has been calculated by estimating the percentage of our forecast electrification asset costs that vary with traffic levels and dividing this estimate of variable costs by our forecast for electrified traffic. The charge is payable by RUs running electrified vehicles on a pence per electrified vehicle mile basis for passenger and charter operators or £ per electrified KGTM (Thousand Gross Tonne Mile) basis for freight operators. There are separate rates for vehicles operating on the DC network (third rail) and vehicles operating on the OLE network.

The Electrification Asset Usage Charge is set at the start of the control period and then increased annually in line with the Consumer Prices Index (CPI) in accordance with access contracts. The charge is paid by all operators of electrified services (i.e., passenger operators on concession-style agreements, freight operators, open access operators and charter operators).

Traction Electricity (EC4T) Charges

The traction electricity charge (also known as electric current for traction or EC4T) recovers the cost of electricity supplied by Network Rail to power trains.

The EC4T charge is paid by all operators who use electricity supplied by Network Rail to power their electrified trains i.e. passenger operators on concession-style agreements, freight operators, open access operators and charter operators.

The level of the charge is dependent on the price of electricity that Network Rail pays, the amount of electricity consumed, transmission losses and the electrified train miles operated for electric multiple units, bi-modal units operating in electric mode and locomotive-hauled services respectively. The amount of electricity consumed is calculated based on one of the following two approaches:

- i) metered kWh consumption (based on readings taken from meters on trains).
- **ii) modelled** kWh consumption (based on estimated consumption, subject to an end of year volume reconciliation exercise)

RUs (passenger and freight) can choose their strategy for the procurement of electricity (including the option to lock tariffs) via our contract with the relevant electricity supplier.

Alternatively, operators can purchase electricity from a third party.

The modelled traction electricity charges are calculated by multiplying electrified train miles by the relevant modelled consumption rate and electricity tariff. Modelled consumption rates are available to view on our CP7 access charges page.

<u>On-train metering</u> (OTM) enables train operators to be billed for their use of traction electricity, based on metered traction electricity consumption data, rather than modelled traction electricity consumption rates.

The metered traction electricity charges are defined by the following formula:

EC4T charge (pence) = [electricity consumption (kWh) x (1+ per cent losses uplift) – regenerated electricity (kWh)] x tariff (pence/kWh)

The losses uplift values used to calculate metered traction electricity charges are contained in Appendix 3 to the <u>Traction Electricity Rules</u>.

Traction electricity tariffs are made up of 'energy' and 'delivery' tariffs. 'Delivery' tariffs vary by geographic areas or Electricity Supply Tariff Areas (ESTAs) and two season and time of day bands. The charges are billed every accounting period. 'Energy' tariffs are determined by the price of energy procured from the supplier.

Where a RU, which uses modelled traction electricity consumption rates, is using regenerative braking (a system of braking where some generated current is returned to the overhead line or third rail), it may be eligible to receive a discount. The discount reflects the cost savings that result from the lower net consumption of electricity as a result of energy being returned to our distribution system.

At the end of each financial year we carry out a volume reconciliation, which reconciles estimated and actual electricity consumption in each of the ESTAs. Charter services and RUs which are billed by way of OTM do not participate in the volume reconciliation. Network Rail and modelled RUs participate in the volume reconciliation. We calculate any supplementary charges or rebates that should apply to RUs, as a result of this volume reconciliation exercise. This process ensures that all consumption is accounted for.

Following the volume reconciliation, we carry out a cost reconciliation. This reconciles the difference between electricity tariffs billed against the actual cost. The cost reconciliation ensures that the entire cost is accounted from all RUs, except charter services, which are excluded from the cost reconciliation because the administrative costs of including them would be disproportionately high.

We can also accommodate trains on our network that have more than one form of traction. These trains are referred to as Bi-mode trains. Bi-mode trains can use diesel power when there is a section of our infrastructure that is not electrified and electric power where the infrastructure is electrified.

Modelled Bi-mode trains will be deemed, for billing purposes, to be using traction electricity whenever they are on electrified infrastructure that they are capable of drawing power from (e.g. an AC/diesel unit on AC infrastructure will be deemed, for billing purposes to be using AC power). This is because it is not possible to know whether these trains are using traction electricity. These trains are not deemed to be using traction electricity when they are operating on non-electrified infrastructure.

Metered Bi-mode trains will be charged for traction electricity according to readings taken from the meters on-board the train. Additional data ('Traction Electricity Usage Occurrence Data') is required in order to confirm when the train is using diesel.

More information on the traction electricity charges can be found in the <u>Traction Electricity Rules</u>.

More information on on-train metering is available on our website.

Infrastructure Cost Charge - freight

The Infrastructure Cost Charge for freight combines two charges into one mark-up for freight services: the freight only line (FOL) charge, which was intended to recover the costs of lines that would close if freight services ceased to operate, and the Freight Specific Charge (FSC), which contributes to the recovery of freight avoidable costs (i.e. costs that would be avoided if there was no freight traffic on the network) that are not recovered through other track access charges.

The ICC for freight (contractually referred to as the Freight Specific Charge) recovers a proportion of Network Rail's freight fixed costs. Consistent with relevant legislation, the Access, Management and Licensing Regulations, the charge is only levied on segments of the market deemed by ORR as capable of bearing the cost.

To determine which freight services can bear this charge, the ORR apply a market-can-bear test to assess the likely impact of imposing this charge on different freight services (or "market segments"). This takes account of evidence on how demand for rail freight services from different commodities may change, as a result of higher charges and the extent to which rail freight services compete with other transport modes such as road. For market segments where demand is less sensitive to changes in charges, and which face less competition from other transport modes, their ability to bear a charge is higher.

Currently, the total traffic-related avoidable fixed costs allocated to freight services by Network Rail's fixed cost model determine the upper limit. In practice, the assessment of ability to bear means that existing freight ICCs recover only a small proportion of these traffic-related avoidable fixed costs.

In CP7 the charge is only being levied on traffic carrying coal for the electricity supply industry, spent nuclear fuel, biomass for the electricity supply industry, and iron ore. Each of these commodities are defined as separate market segments. The Infrastructure Cost Charge is set at the start of the control period and then increases, annually, in line with the Consumer Prices Index.

Access Charge Supplements

Access Charge Supplements, payable by passenger RUs who have chosen to 'opt in' to the full possessions regime (Schedule 4), recover the cost to Network Rail of having to pay compensation to passengers RUs for disruption caused by an efficient volume of possessions (or restrictions of use) on the rail network.

RUs incur costs and lose revenue when disruptive engineering possessions are taken on the railway. Schedule 4 of the track access

contracts sets out the arrangements by which we compensate RUs for those costs and revenue losses.

It is accepted that a certain level of engineering related disruption is inevitable on an operational railway. We are funded for paying compensation up to an efficient level agreed by ORR, through the payment of access charge supplements. This incentivises us to plan our engineering work efficiently and notify operators early of any planned disruption.

In return for the payment of an access charge supplement, passenger RUs who have chosen to 'opt in' to the full passenger regime receive formula based compensation for costs and revenue losses from engineering possessions. In addition, they are able to negotiate compensation in certain instances of more extreme planned disruption, for example possessions lasting for a number of consecutive days or in cases where repeated and regular possessions have led to significantly higher costs and losses by the operator.

By default, open access RUs that have not fully opted-in to the full possessions regime do not pay access charge supplements but receive compensation for the most significant disruption that they suffer. Publicly contracted passenger RUs that have not fully opted-in to the full possessions regime do not pay an access charge supplement and do not receive any compensation for possessions.

The access charge supplement is set at the start of the control period and increased, annually, in line with the Consumer Prices Index.

Fixed Track Access Charge

The purpose of the Fixed Track Access Charge (FTAC) is to recover our residual funding requirement after accounting for the forecast income from variable track access charges, the station long term charge, network grants and other single till income (e.g. income that we receive through

other sources such as property assets). The FTAC is payable by publicly contracted passenger RUs on an operator-specific basis.

Fixed Track Access Charges are calculated by allocating our net revenue requirement to routes and then dividing these costs between publicly contracted passenger RUs according to each publicly contracted passenger RU's share of avoidable fixed costs. This process is carried out separately for England & Wales and Scotland, i.e. the Scottish net revenue requirement is recovered from those operators specified by Transport Scotland. The net revenue requirement for England & Wales is allocated to routes in England & Wales according to each route's share of avoidable fixed costs. A detailed explanation of the methodology for calculating Fixed Track Access Charges is available in Annex 1 of our key assumptions.

The Fixed Track Access Charge is set for five years and is payable by accounting period. The Fixed Track Access Charge recovers a proportion of the infrastructure costs deemed not to vary with traffic levels.

The Fixed Track Access Charge is indexed, annually, in line with the Consumer Prices Index.

Infrastructure Cost Charge – open access

An Infrastructure Cost Charge may be payable on some open access services. The purpose of the Open Access Infrastructure Cost Charge is to recover some fixed costs from open access services. There are three market segments for open access services in CP7: 'interurban', 'major airports' and 'other'. Services operating in the 'interurban' and 'major airports' open access market segment, have been deemed to be able to bear such charges.

Infrastructure Cost Charges will be levied on new entrant open access services that operate (or partly operate) within the 'interurban' market segment, for the sections of the service that are classed as 'interurban'. A service (or part of a service) is within the interurban market segment if it meets the following criteria:

- at least one of the stations served has average annual entries/exits above 15 million passengers per year^{10,} or the station served is within two miles of a station meeting that demand threshold:
- at least one other station served has average annual entries/exits above 10 million passengers per year ¹¹ or it is within two miles of a station meeting that demand threshold;
- and two of the stations served meeting the above demand thresholds, or within two miles of stations meeting the above demand thresholds, are at least 40 miles apart.

Existing open access services (i.e. open access services that existed before the start of Control Period 6) that currently operate within the interurban market segment will not be subject to the charge, unless they substantially modify their current service. Substantial modifications are:

- increasing the number of services;
- increasing the number of calls at stations where the operator currently has the right to stop; or
- calling at new stations (where the operator does not currently have the right to stop).

Infrastructure Cost Charges will be levied on new entrant open access services that operate within the 'major airports' market segment, for the

^{9 2023} periodic review final determination: Supplementary document – Charges and incentives: Infrastructure cost charges conclusions, Office of Rail and Road, October 2023. This may be accessed here.

¹⁰ Based on five-year average of station entries/exits between 2013-14 and 2017-18. ORR calculation. Estimate of station usage, Steer Group, December 2018. This may be accessed here.

¹¹ ORR calculation, Estimate of station usage, Steer Group, December 2018, This may be accessed here.

sections of the service that are classed as 'major airports'. A service (or part of a service) is within the major airports market segment if it meets the following criteria:

- at least one station served has average entries / exits above 15 million passengers per year, or is within two miles of a station meeting that criterion; and
- a station (or stations) that directly serve an airport have average entries / exits above 5 million passengers

The charge will be phased in over five years for new services. Existing services will not benefit from a phased-in charge¹². Details on how the charge will be phased-in can be found in table 2.1 of ORRs 'Open access infrastructure cost charge implementation conclusions' document.

The Open Access Infrastructure Cost Charge, for both interurban and major airports market segments has been set at £5 per train mile in 2023/24 prices, and is indexed, in line with the Consumer Prices Index.

Access Charges Discounts

For CP7, we have developed an <u>Access Charges Discount Policy</u> which provides an opportunity for all RU's to apply for and benefit from access charges discounts. The aim of the policy is to encourage the development of new rail services or the use of considerably under-utilised lines, in line with the Railways (Access, Management and Licensing of Railway Undertakings) Regulations 2016 (A&MRs).

The policy applies to the Variable Usage Charge (VUC) and the Electrification Asset Usage Charge (EAUC), subject to criteria. The

discount is set at 100% of the applicable VUC and EAUC rates for a duration of seven railway periods (approximately six months).

RU's who are interested in obtaining a discount should contact their Network Rail customer account manager to discuss their proposed service and assess their eligibility. Applications will be reviewed by the Access Charges Discount Panel (ACDP), which will make a decision based on the criteria set out in the policy document.

The policy document also provides information on the funding, termination, timing and terms and conditions of the discount scheme, as well as the contacts for help with discount applications. The policy document will be kept under review and may be updated based on feedback and experience.

Additional Charges

ORR allows additional charges to be raised if a signal box, for example, needs to be opened specifically outside the hours set out in the timetable planning rules in order to accommodate a new service or new services. These are agreed on a case-by-case basis and then added into the relevant RU's track access contract.

Scarcity charges

Current charging arrangements do not include scarcity charges.

Track access to service facilities

In addition to the track access charges, the Access, Management and Licensing Regulations provide for entitlements to track access to facilities and the supply of services.

¹² Heathrow Express is an existing service and is subject to the charge from the start of CP7.

Under these regulations, we may apply the following charges:

- Station Long Term Charge
- Depot Charges
- Qualifying Expenditure (QX)
- Facility Charges
- Property Rent.

Supply of services

In respect of the stations that we operate (managed stations), or those that are leased (short or long term) to other station operators (TOC-leased¹³ stations), charges are applied under the terms of station access contracts and lease contracts that RUs enter into with us.

Station Long Term Charges

The Station Long Term Charge is payable at all regulated railway stations in Great Britain (both those managed by RUs – i.e. TOC leased – and those managed directly by Network Rail).

The LTC recovers the maintenance, repair and renewal (MRR) costs of operational property assets (e.g. station buildings, platforms, canopies), passenger information systems (e.g. information screens, public address systems) and security systems (e.g. CCTV)

Station charges are generally recovered by the Station Facility Owner (SFO) through a pass on of the long-term charge to passenger operators that use its stations on the basis of usage (or something similar).

The Station Long Term Charge is regulated and set by ORR for each control period. As part of PR23, ORR has determined the overall level of Station Long Term Charge income from 01 April 2024 to 31 March 2029,

as well as the charges at individual stations. The level is set to recover the amount ORR considers to be our efficient operational property and Station Information and Security Systems (SISS) MRR expenditure associated with relevant stations.

At TOC-leased stations, the charge is paid by all passenger operators calling at that station (in proportion to the number of vehicle departures) to the RU that operates the station; it is then passed on to Network Rail.

At Network Rail managed stations, RUs pay the Station Long Term Charge for each managed station directly to Network Rail, in proportion to their share of vehicle departures at that station.

The methodology for calculating a station's Long Term Charge was dependent upon its managed status (i.e., whether it is TOC-leased or Network Rail managed). In PR23 the classification was revised such that the calculation methodology applied is dependent upon station size/complexity, based on ORR annual estimates of station usage.

Thirty-three 'Large' stations (as defined by ORR in PR23) have their LTC calculated on a station specific basis. All remaining stations ('Category Averaged' stations) are calculated under the category averaged methodology.

The methodology for calculating Category Averaged station Long Term Charges for CP7 is described below:

- 1. Take the post-efficient region-level forecast of the annual average operational property maintenance, repair and renewal (MRR) expenditure for Category Averaged stations in CP7.
- 2. Allocate (1) to individual Category Averaged stations in a region, using <u>ORR estimates of station usage</u> and long-term annual average operational property costs for each station (the amount

¹³ Previously referred to as franchised stations.

that we expect we would have to spend, on average, to preserve asset condition):

An estimate of long-term annual average cost for operational property assets exists for all individual Category Averaged stations (with a small number of exceptions where a station has just recently opened). These estimates are used in conjunction with the station usage data, to apportion (1) between a set of region and station category combinations. The CP7 expenditure for each region and station category combination is divided equally between all stations within that combination to set the MRR expenditure level for each individual Category Averaged station.

- 3. Take the region-level forecast of the annual average Station Information and Security System (SISS) MRR expenditure for Category Averaged stations over CP7 and allocate to applicable individual Category Averaged stations in the relevant region, based on their share of the region's annual average SISS renewal cost over 35 years.
- 4. There are some third party SISS contracts that only apply to certain stations. Where a third party SISS contract covers multiple stations, these costs are allocated to individual stations based on each station's share of those stations' annual average SISS renewal cost over 35 years.
- 5. Add (2), (3) and (4) to calculate the total Long Term Charge for each Category Averaged station.

The Long Term Charge at each Large station is station specific and equals the forecast of efficient long-run MRR expenditure on operational property and SISS expenditure. The methodology for calculating Large station long term charges for CP7 is described below:

- 1. Calculate the long-term annual average cost for renewal of operational property assets for each individual Large station.
- 2. Take the annual operational property maintenance forecast cost in CP7 for each individual Large station; we consider this to be representative of long-run operational property maintenance expenditure.
- 3. Calculate the long-term annual average renewal cost of SISS assets over 35 years at each Large station.
- 4. Take the annual SISS maintenance forecast cost in CP7 for each individual Large station; we consider this to be representative of long-run SISS maintenance expenditure.
- 5. There are some third party SISS contracts that only apply to certain stations. Where a third party SISS contract covers multiple stations, these costs are allocated to individual stations based on each station's share of those stations' annual average SISS renewal cost over 35 years.
- 6. Sum each of the above elements (1 5) to calculate individual Large station long term charges.

Both Large and Category Averaged Station Long Term Charges are fixed at the start of the control period and set to increase annually in line with the Consumer Price Index.

Facility Charges for stations

Facility Charges recover the costs of certain historical station enhancements funded by Network Rail at an operator's or user's request. Such arrangements are no longer available for new enhancements.

Property Rent for stations

Property rent is payable by station operators to Network Rail for the stations that we own, under the terms of their station lease; the station lease is not regulated by ORR. However, as it forms part of Other Single

Till Income, ORR reviews our assumed property rental income as part of the Periodic Review.

The rent provides Network Rail, as the property owner, a share of the income received by the station operator from commercial activities at the station- such as retailing and advertising.

Although property rent is subject to RPI indexation, there is no formal process for review or resetting of the rent to reflect changes in the level of commercial activity or income growth at stations.

Qualifying Expenditure (QX) for Network Rail managed stations

Qualifying Expenditure recovers the operating costs of common amenities at managed stations such as station cleaning, refuse collection and disposal, insurance, utilities, and the provision of competent and suitably trained staff. It consists of a fixed element which is negotiated with RUs for the control period and a management fee element which is levied as a percentage of the fixed QX charge and recovers indirect central costs that arise as a result of operating managed stations. The QX management fee also includes a profit element which aims to recover the financial risk associated with providing 'QXable' services at managed stations on a fixed deal basis. ORR regulates only the management fee element of QX.

The approach to the setting of the QX charge was updated for CP7. The QX charge for the first year of CP7 was set to reflect the CP6 QX charge, but uplifted to adjust for inflation. The QX charge for each subsequent year of CP7 was set by increasing the annual fee by a fixed 2% uplift per annum. It aims to provide certainty to RUs on what they will pay over a five-year period, and further incentivises Network Rail to obtain value for money in the services it offers and procures from third parties at managed stations.

Where train operators occupy space at a managed station on an exclusive basis their occupation may be subject to individual leases for the space occupied. Charges under these leases are not regulated. An additional charge may be levied where the RU has requested specific services.

Depot Charges

Network Rail also levies charges in respect of the depots that it leases to depot operators. Depot operators are either RUs or specialist train maintenance companies.

Network Rail leases light maintenance depots to depot operators. The depot operator pays Network Rail a property rent for the facility, which is generally split between equipment rent and buildings rent. The rents payable by the depot operator are subject to review by Network Rail which generally consists of comparison with the open market value of industrial sites in the vicinity (for land and buildings), a depreciated cost model for plant and equipment, or by reference to an indexation method. While ORR does not set depot charges at a periodic review, the depot income we expect to receive is taken into account in determining our funding settlement. Depot charges paid by beneficiaries to Depot Facility Owners for the provision of light maintenance services are approved by ORR through its approval of Depot Access Agreements.

Environmental charges

Great Britain track access charges do not include any environmental charges. No scheme has been implemented in Great Britain for the direct reduction of access charges to reflect the environmental benefits of rail. However, the websites of the <u>Department for Transport</u> and <u>Transport Scotland</u> may be consulted for the availability of grants (such as the Mode Shift Revenue Support (MSRS) grant scheme) which may

compensate in relation to track access charges or the cost of rail facilities, having regard to the environmental benefits of rail freight transport.

5.4 Additional Services and Charges

Additional services are generally not provided by Network Rail. Services provided by other service providers, from or in relation to facilities connected to the main rail network. Please contact the service provider directly found on Network Rail's website.

Traction current

Traction current, where available in relation to the main rail network, is supplied by us as part of the access rights provided under Track Access Contracts, and the supply equipment is provided accordingly, so as to support that supply provision. Electrical supply for traction current can either be in the form of an overhead contact wire service or as a third (or third and fourth) rail service, depending on location (please see electrification map in Annex 3).

Services for trains

RUs are responsible for the supply of these services for their own trains. Some such services may be provided by the operators of light maintenance depots, as part of the maintenance facilities.

In addition, we may also provide access to preheating (shore supply) and water supply at some of our 20 managed stations, under contract.

Services for exceptional transports and dangerous goods

We can offer advice on how the transport of exceptional loads and dangerous goods can be achieved in accordance with the relevant rules and regulations, which are described in <u>Section 4.7.</u>

For advice on the transport of dangerous goods please contact:

Paul Ashton

Head of Operational Safety & Assurance

Network Rail

The Quadrant:MK, Elder Gate, Milton Keynes, MK9 1EN

Email: Paul.Ashton2@networkrail.co.uk

Supply of fuel

This is not included in our service package, but is a "service" falling within the Access, Management and Licensing Regulations.

5.5 Ancillary Services and Charges

To the extent that Network Rail supplies ancillary services, which may comprise access to the telecommunication network and provision of supplementary information, where these fall within arrangements under a track access contract, the charging principles are set out under <u>Section 5.2</u>. Otherwise, the relevant principles are set out in sections 2 and 3 of our <u>Stakeholder Code of Practice</u> approved by ORR under our network licence.

Access to telecommunication network

Neither we nor any other service provider is obliged to provide these services.

The use of our communications network described in <u>Section 2.3.12</u> is primarily for those activities contained within the minimum access package.

Provision of supplementary information

Where information provision is not otherwise dealt with in this Network Statement, please refer to our <u>Stakeholder Relations Code of Practice</u>.

Technical inspection of rolling stock

We do not provide this service; it may be carried out by relevant depot or facility owners.

Ticketing services in passenger stations

As IM, we do not sell train tickets to passengers. RUs, that operate passenger train services, undertake this activity at stations across the country. A passenger can purchase tickets from stations by using the ticket offices or ticket vending machines. Passengers are also able to purchase rail tickets online, which can either be delivered to them or collected at a railway station.

At stations managed by us, see <u>Section 2.3.3</u>, the ticket offices are leased to the RU responsible for selling tickets at that station (designated lead retailer). All stations that are not managed by us have a lead operator who leases the station, including the ticket offices.

Specialised heavy maintenance services

Though we own some heavy maintenance depots which are leased to other RUs, as IM, we do not operate nor offer facilities at such depots. ORR has no approval role in relation to heavy maintenance depots.

Heavy maintenance services are often provided by the manufacturer of the rolling stock. Other train operators, or third parties procuring services on behalf of a train operator (known as beneficiaries), who want to use the depot must contact the relevant facility owner directly. Please refer to the Connected Facilities Details (Section 5.3) for more information.

5.6 Financial Penalties and Incentives

5.6.1 Penalties for Path Modification

At present there are no penalties or charges levied for path modifications.

5.6.2 Penalties for Path Alteration

At present there are no penalties or charges levied for path alterations.

5.6.3 Penalties for Non-Usage

At present there are no standard non usage/reservation charge arrangements under regulation 17 of the Access, Management and Licensing Regulations.

5.6.4 Penalties for Path Cancellation

At present there are no penalties or charges levied for path cancellations. However, through the existing industry performance regime an operator will make payments if they cause delay or cancel a train which then has a knock-on impact on another operator's services. See section 5.7 below for more detail.

5.6.5 Incentives/Discounts

Reduction fee for Framework Agreements

At present there is no standard arrangement for a reduction fee for Frameworks Agreements.

ERTMS Discounts

At present there are no standard ERTMS Discount arrangements.

5.7 Performance Scheme

The GB rail industry operates a performance scheme which provides compensation to RUs for unplanned delays and cancellations which it is not directly responsible for. It is a liquidated sums regime which provides compensation based on the marginal effect on future revenues of changes in performance caused by Network Rail or other RUs. Details of the regime are incorporated into the track access contract of each RU. In most cases a standard template arrangement applies, though bespoke arrangements are possible. Schedule 8 sets out a framework by which payments are made by either party if RU or Network Rail cause delays above their respective benchmarks. Payments are received when delays caused by a given party are below benchmark.

The Network Rail, passenger, charter and freight RU benchmark targets are set at realistic but challenging levels for all parties. If Network Rail and RUs perform at their respective benchmark levels then no Schedule 8 payments are made. The freight operator benchmark is based on average historic freight performance, adjusted for expected network traffic growth over the control period, and is common to all freight RUs. The charter operator benchmark is also based on average charter performance, adjusted for expected network traffic growth over the control period, and is common to all charter RUs.

While publicly contracted passenger RUs may be incentivised to improve their own performance through their contract with the Department for Transports (DfT), under Schedule 8 of the track access contract, RUs also pay for delay they cause. They do not directly pay the other operators who suffer the effects of knock-on disruption, but instead they pay Network Rail, because it is only here that the direct contractual relationship exists. In turn, Network Rail pays the affected RU, and over time and on a national basis this is expected to hold Network Rail neutral to the effect of these consequential liabilities. Freight and charter RUs

pay for the actual knock-on disruption that they cause to other operators, whereas passenger RUs pay a fixed, estimated amount based on disruption to their own services. This means that passenger RUs could pay for more, or less, disruption than they have truly caused, which incentivises Network Rail to manage the impact of knock-on delays. Passenger RUs are also able to claim additional compensation from Network Rail if performance is poor over a sustained period, the trigger being where network performance is more than 20 per cent worse than the benchmark on a moving annual average basis.

Freight and charter RUs may also select an incident cap (a cap which limits the RUs financial liability under Schedule 8) in exchange for paying an Incident Cap Access Charge Supplement. Where Freight and charter RU delay incidents cause delays in excess of the chosen cap, any minutes delay above the cap are disregarded from the Schedule 8 regime, i.e. the operator is not liable to pay Schedule 8 for minutes delay in excess of the cap. Freight and charter RUs also have annual caps, which limits their liability through the performance regime on a yearly basis. The annual cap is reciprocal, so Network Rail's maximum annual liability is also limited to the same amount.

For freight RUs, Network Rail and freight operator payment rates are common across all freight operators, reflecting the desire to retain simplicity in the freight Schedule 8 regime. For charter RUs, Network Rail and charter operator payment rates are also common across all charter operators.

The performance scheme has to meet requirements set out in Regulation 16 and Schedule 3 of the <u>Access, Management and Licensing Regulations</u>. Further information on the performance scheme may be found on ORR's website.

Dispute Resolution

The procedure for dealing with disputes relating to the performance scheme are set out within Schedule 8 of <u>ORR's template track access</u> contracts.

5.8 Changes to Charges

The charges that Network Rail levies on train operators are determined as part of the periodic review process, which also establishes Network Rail's funding and outputs to be delivered. The periodic review process sets Network Rail's charges for a five-year period. During this period changes to charges are limited to small increases each year to reflect inflation. The 2023 Periodic Review process (PR23) set Network Rail's charges for the period from 1 April 2024 to 31 March 2029. Therefore, with the exception of these small increases, no material changes to charges are expected prior to 1 April 2029. Any future changes will be determined by ORR, and established in consultation with the industry, as part of the 2028 Periodic Review process (PR28).

5.9 Billing Arrangements

Each RU which operates on the main rail network will for commercial issues communicate with an assigned member of the relevant Network Rail route team. The relevant team is responsible for cost recovery of monies owed to Network Rail by the relevant RU, much of which is outlined in the specific track access contract. Remedies for non-payment include interest charges, suspension of the contract and termination. Invoices are sent to RUs via Network Rail Finance Shared Services and are typically on a periodic (four week) basis.

Chapter 6 – Operations

6.1 Introduction

This chapter sets out rules concerning the obligations to be followed for train and shunting operations.

6.2 Operational Rules

Railway Group Standards and the Rule Book

Railway Group Standards (RGSs) are technical standards and operating procedures contributing to safe railway system operation and interworking, compliance with which is mandatory. Rail Industry Standards (RISs) define functional or technical requirements to be met in circumstances where the management of the railway system does not need the use of Railway Group Standards. RISs are railway-specific standards: they contain requirements applicable to subsystems, or they set out rules about how subsystems should be operated or managed.

RISs benefit the industry by removing the need for companies to develop and maintain their own (company) standards in the areas covered by RISs. RISs are produced under governance arrangements approved by the Industry Standards Coordination Committee on behalf of the industry. These documents are issued by RSSB and can be accessed on its <u>website</u>, some standards are supported by Guidance Notes, also issued by RSSB.

In addition, we have our <u>own standards</u> that are applicable to us Rail, our contractors and our suppliers.

National Technical Rules

Railway Group Standards are, for the purposes of Interoperability, notified to the European Commission as National Technical Rules (NTRs).

RSSB is responsible, on behalf of the industry, for proposing to the DfT those industry standards that should be notified against each of the NTSN's for use on the GB main line railway. The DfT may need to notify additional requirements to ensure the notified NTRs address all of the essential requirements.

The DfT publishes the <u>NTRs and project-specific technical rules</u> that it has notified to the European Commission for use in Great Britain. The lists of NTRs and related documents will be subject to periodic review in response to changes in the status of the NTSN's, the closing out of open points in the NTSNs and as GB standards are developed or withdrawn. The currently notified NTRs can be found on the <u>gov.uk website</u>.

National Safety Rules

The Railways and Other Guided Transport Systems (Safety) Regulations 2006 (as amended) requires the safety management systems of infrastructure managers and RUs on the mainline railway to be "established to ensure that the mainline railway system is in conformity with relevant national safety rules and relevant safety requirements laid down in NTSNs".

Additional information about the NSRs can be found on ORR's website.

Freight Train Loads (and Lengths)

The permitted maximum trailing load (by weight) and length of a freight train are key parameters for a RU's business.

These dimensions vary according to the geography of the network (i.e. gradients, curvature, signalling, track layout and other features). The Freight Train Loads Books (FTLBs) contain maximum weight and length data for all lines of the GB network. The FTLBs were re-issued in an up to date format, however some of the data is commercially sensitive and cannot be made readily available. Please contact our <u>Freight Documentation Support</u> if you have specific queries.

The loads and lengths are published by geographical route¹⁴ as follows Book of 'Specially Authorised Loads'

 National issue - a national compendium of specific permissible freight train loads which exceed those shown in the Route Books - showing any special conditions or restrictions that apply.

Books of 'standard' loads

Region	Route coverage	
Eastern	Anglia, East Midlands, North and East, East Coast	
North West and Central	North West, Central, West Coast South	
Scotland	Scotland	
Southern	Kent, Wessex, Sussex, NR High Speed	
Wales and Western	Wales, Western	

6.3 Operational Measures

6.3.1 Principles

We develop and maintain train regulation policies so as to provide a framework to enable regulating decisions to be made by signallers in a way that is fair, consistent and in the best interests of all RUs and their passengers and freight customers so far as can reasonably be achieved, facilitating achievement of their performance objectives.

6.3.2 Operational Regulation

Train regulation policies are established by us in consultation with RUs, who may propose variations to them. Any disputes are determined by

the Timetabling Panel of the Access Disputes Committee and if necessary by further appeal to ORR. The arrangements are governed by the <u>Railway Operational Code in Part H of the Network Code</u> – please see Section 3.2.1.

6.3.3 Disturbances

The measures to be undertaken in the case of disruption or anticipated disruption so as to sustain, and where necessary restore, operation of train services on the network in accordance with the working timetable are set out in the <u>Railway Operational Code in Part H of the Network Code</u> – please see <u>Section 3.2.1</u>.

When a disruptive event occurs, we have to determine the appropriate actions to restore the working timetable as soon as is reasonably practicable, taking into account the needs of passengers and freight customers, the interests of safety and security and the efficient and economical operation of trains and the network. RUs are required to cooperate as regards such actions, which may include the provision of traction and train crew to clear the line.

We lead the process of development and maintenance of contingency plans and codes of practice which can be implemented in cases of major disruption. Where disruption is expected to continue for an extended period (typically in excess of two days), it is usual for an amended timetable to be implemented. These timetables are often prepared in advance by us in consultation with the affected RUs, so they can be implemented quickly.

¹⁴ Network Rail's operations are managed regionally in 'Route' organisations with the configuration as shown in the table.

Foreseen Problems

The Railway Operational Code provides for contingency plans to accommodate changes to the train service which may be expected to result in operational disruption. This may include pre-planned amended timetables that can be uploaded to the industry systems quickly so that passengers can see what train services will be running the following day.

Unforeseen Problems

Where a problem is unforeseen, but may be expected to result in operational disruption, and there is no contingency plan to cover it, we will, under the Railway Operational Code, consult with affected RUs as may be reasonably practicable, and determine the most appropriate action to be taken.

6.4 Tools for Train Information and Monitoring

Path Coordination System (PCS, formerly Pathfinder)

PCS is a web application provided by RNE to IMs, ABs, RFCs, RUs and non-RU Applicants, which handles the communication and co-ordination processes for international path requests and path offers. PCS also assists RUs and non-RU Applicants in their pre-co-ordination tasks related to train path studies and international train path requests. Our domestic system is connected to the RNE Path Coordination System.

RNE provides a PCS Integration Platform (PCS IP), a direct communication channel between PCS and the domestic systems of RUs and IMs/ABs allowing two-way data interchange. With this module, one of the major obstacles to the use of PCS in the freight business has been eliminated: RUs and IMs/ABs no longer have to provide the same information about an international train path request twice (once in the national system and once in PCS) – it is now possible to automatically

synchronize the international train path request data between national systems and PCS.

In November 2013 PCS was ready to be the tool for handling (publish, request, allocate) Pre-arranged Paths (PaPs) according to the RFC Regulation 913/2010. In the meantime, the system is continuously being improved based on the experiences of RUs, IMs and RFCs, in order to make PaP process for freight trains faster and more flexible.

For more information, please visit the website <u>Path Coordination System</u> - RNE - RailNetEurope | Association For Facilitating Traffic On European <u>Rail Infrastructure</u> or write to the helpdesk: <u>support.pcs@rne.eu.</u>

Charging Information System (CIS formerly EICIS)

CIS is an infrastructure charging information system for Applicants provided by IMs and ABs. The web application provides fast information on charges related to the use of European rail infrastructure and estimates the price for the use of international train paths within minutes. It is an umbrella application for the various national rail infrastructure charging systems. Future developments of the CIS aim to implement an RFC route-based estimate of infrastructure charges according to the RFCs' requirements.

However, CIS as configured currently is not compatible with the structure of our charges, which are not included in the system.

For more information, please visit the website <u>CIS - Welcome</u> or write to the helpdesk: <u>support.cis@rne.eu.</u>

Train Information System (TIS formerly EUROPTIRAILS)

TIS is a web-based application that supports international train management by delivering real-time train data concerning international trains. The relevant data are obtained directly from the IM's systems and all the information from the different IMs is combined into one train run

from departure or origin to final destination. In this manner, a train can be monitored from start to end across borders. RUs and terminal operators may also be granted access to the TIS and they can join the RNE TIS Advisory Board. All members of this Board grant all other members full access to TIS data if they are involved in the same train run. Without it, mutual agreements have to be signed between RUs and between RUs and terminal operators. Access to TIS is free of charge. A user account can be requested via the RNE TIS Support. More information can be found on Train Information System - RNE – RailNetEurope | Association For Facilitating Traffic On European Rail Infrastructure

Chapter 7 – Service Facilities

7.1 Introduction

The <u>Service Facilities Statement's</u> objective is to inform applicants, the authorities and other interested parties about our service facilities, and the terms of condition for allocation of capacity and use. The document covers Network Rail service facilities only. It is produced in accordance with The Railways (Access, Management and Licensing of Railway Undertakings) Regulations 2016

7.2 Service Facility Overview

Service Facility Information

RailNetEurope, a Europe-wide organisation of railway infrastructure managers, has published Common Template for Service Facilities in line with the requirements of the <u>Implementing Regulation</u>.

The Common Template is available on RailNetEurope's website.

The Common Template can be used by service facility operators and service providers in order to assist in populating a description of their facilities and/or services. Information on the individual themes/elements shown in the common template should be explained, if applicable.

It is an obligation for operators of service facilities connected to the GB rail network to send their ready-to-publish information or a hyperlink to their service facility information to the following email address:

NetworkStatement@networkrail.co.uk

7.3 Service Facilities Managed by the Infrastructure Manager

7.3.1 Common provisions

All provisions described in the sections below are specific to the particular service facility described.

7.3.2 Passenger Stations

7.3.2.1 General Information

We manage 20 stations on the network, as listed on our website.

The remaining stations are operated by various parties, normally a RU acting under a local passenger franchise agreement with the benefit of a lease where we are the owner of that station.

The operator of each station is known as the station facility owner. Other RUs who want to use the station (known as beneficiaries) must enter into an access agreement with the station facility owner (Network Rail in the case of the 20 stations which it operates, and otherwise normally the relevant RU). Such agreements govern the provision of common station amenities and services by the facility owner, including such matters as the availability of forecourts, concourses and platforms, non-exclusive staff amenities, cleaning and lighting and train despatch.

Such agreements may also deal with services other than those that are common to the use of the station generally, and if their provision is not agreed by the relevant parties, ORR may be requested to direct this.

7.3.2.2 Services

Details of facilities at the 20 stations we manage (as listed in <u>Section 2.3.3</u>) are available on <u>our website</u>.

7.3.2.3 Service Facility Description

The extent of most facilities provided at stations managed by RUs is usually determined by the facility owner. Details of the facilities at these stations can be found on the National Rail website.

7.3.2.4 Charges

Details of charges are set out in the <u>Services Facilities Statement</u>. Please refer to chapter 5

7.3.2.5 Access Conditions

Please refer to <u>chapter 3</u> for information relating to access conditions.

7.3.2.6 Capacity Allocation

Platform heights at all stations on the main rail network in Great Britain are generally higher than those encountered on railways in continental Europe. The stepping distance (both vertical and horizontal) between platforms and trains is part of the consideration afforded in the course of acceptance of new rolling stock onto the network.

More information on rolling stock acceptance is given in <u>Section 3.4.1</u> and detailed information about the infrastructure is contained in the Sectional Appendix, which is described in <u>Section 2.3</u>.

7.3.3 Freight Terminals

There are several types of facilities that are commonly described as freight terminals, and there are other facilities that have a capacity to receive or despatch goods, operate as a terminal point in freight transport and serve, or potentially serve, multiple final customers. Whilst we are the landlord at a number of terminals nationwide, which are leased to RUs or directly to end users, as the IM we do not operate freight terminals nor offer any terminal facilities.

Any party wishing to use these terminals would need to reach a separate agreement with the facility owner or service provider of that terminal, to whom the Access, Management and Licensing Regulations apply.

Additional information on freight terminals can be found on <u>our website</u> and the Rail Facilities Portal.

Please refer to our <u>Freight Contacts List</u> if you have any additional queries.

7.3.4 Marshalling Yards and Train Formation Facilities, including Shunting Facilities

Though we own some train formation yards which are leased to RUs we do not generally control access to any train formation yards, with four specific exceptions:

- Carlisle Kingmoor Yard
- Ipswich Nodal Yard
- Wembley WEFOC Nodal Yard
- Doncaster Up Decoy Yard.

Any prospective RU or other entity wishing to use one of the non-Network Rail managed yards for train formation or recessing purposes would need to reach an agreement with the facility owner of that yard.

Applications to use the four specific exceptions listed above would be considered as part of the allocation process described in <u>Section 4</u>.

7.3.5 Storage Sidings

National Supply Chain hubs

We do own some storage sidings in connection with our infrastructure haulage operations, however these are specialist sites that would not be generally available for storage of other types of train, vehicles or other rail-borne equipment.

Network Sidings

In some circumstances network sidings may be used for stabling or storage of vehicles where this can be accommodated without detriment to infrastructure operators. Applications for access should be made as for the rest of the network in accordance with the process described in Section 4.

Nodal Yards

We currently have three Nodal Yards: Ipswich, Doncaster Up Decoy and Wembley WEFOC. In terms of availability and planning they are managed as part of the national network and serve to provide line of route recess, regulation & crew relief capability for freight services. They are effectively grouped sets of freight loops with a pattern of dynamic service occupancy and are not intended for long term storage of vehicles.

Non-Network Rail sidings

Facilities to store trains, vehicles and rail-borne equipment may be available in yards, terminals and depots operated by other facility owners, as described in other sub-sections, but would require separate agreement for use with that facility owner.

7.3.6 Maintenance Facilities

There are around one hundred and twenty light maintenance depots around the network which offer light maintenance services. These include refuelling, or the cleaning of the exterior of locomotives or other rolling stock, as well as the carrying out to locomotives or other rolling stock of maintenance work of a kind which is normally carried out at regular intervals of twelve months or less.

Light maintenance depots¹⁵ are treated as separate facilities. If a RU requires access to a light maintenance depot, it will need to enter into an access contract with the facility owner as described in <u>Section 3.2</u>. The operator of a depot is known as a depot facility owner. Although we own most of the light maintenance depots in Great Britain, we are not the facility operator.

Most light maintenance depots are leased to and operated by one or other of the passenger train operating companies, who act as the facility owner, although some are owned and operated by non-train operators, specialist train maintenance companies or FOCs.

Under the Railways Act 1993, RUs and others may only enter into a contract with a facility owner for permission to use that owner's railway facility if ORR so directs. If these contracts (and amendments to them) are not approved by ORR where that is required by law, they are invalid.

Where the parties have not been able to agree on the terms of a contract, or a subsequent amendment where the applicant is seeking increased access to the network, ORR may be asked to issue directions requiring the facility owner to enter into or amend the contract as determined by ORR.

7.3.7 Other Technical Facilities, including Cleaning and Washing Facilities

HABD - Hot Axle Box Detector(s)

This is a piece of line-side equipment, consisting of sensors mounted in a hollow sleeper and associated equipment housed in a relocatable

^{15 &#}x27;Light maintenance services' are defined in section 82(2) of the Railways Act 1993 as services of any of the following descriptions:

⁽a) the refuelling, or the cleaning of the exterior, of locomotives or other rolling stock; or

⁽b) the carrying out to locomotives or other rolling stock of maintenance work of a kind which is normally carried out at regular intervals of twelve months or less to prepare the locomotives or other rolling stock for service.

electrical building that is designed to detect abnormal temperatures in wheel axle bearings (axle boxes) of passing train services. The sensors of a trackside HABD measure the thermal radiation emitted from the axle boxes of in-service rolling stock without the need for frequent intermediate stops for physical examination.

The equipment transmits a message with the passing of each train to the signalling centre responsible for the portion of line concerned. When an alarm is generated, a record will be created showing the wheel (axle) count number, the side (left or right) and temperature (°C) allowing the signaller to bring the train to a stand at a suitable location to facilitate confirmatory inspection by the train driver.

A list of these technical facilities and their location is provided on our website.

WILD - Wheel Impact Load Detector(s)

This equipment consists of fibre-optic sensors mounted under the rail, lineside Radio Frequency Identification Tag reader and a data processing cabinet. The system registers the weight (Weighing In Motion) and wheel impact (Wheel Defect Detection) upon the railhead from each wheel of a passing train.

This equipment is designed to provide information on latent defects in the wheel surface, overloaded axles, and asymmetrically loaded vehicles. The system is capable of generating an alarm message where the output reading exceeds a required threshold. The equipment transmits data to a central server, from which each control centre and nominated data centre can receive train alarms and wheel condition data.

When a wheel impact alarm message is generated, staff at the control centre will be responsible for identifying the train involved and notifying the signaller at the centre through which the train will shortly pass. This will enable the train to be stopped at a suitable location for the driver to

examine the wheel-set(s) concerned and implement a temporary speed restriction for that train as directed by the Standard.

Where vehicles are tagged with RFID tags, wheel condition data may be automatically provided to operators and ECMs for information used to better manage wheel set maintenance.

A list of these technical facilities and their location is provided on our website.

PME – Pantograph Monitoring Equipment

The Pantograph Monitoring Equipment (PME) is mounted lineside that combines an overhead camera for looking down onto the top of the train to view the pantograph and a side mounted camera to view pantograph uplift forces. The high-speed cameras are able to capture high resolution images of the pantograph whilst the train is travelling at line speed.

Post processing can detect damage to the pantograph including wear or damage to the carbon strip. In addition, the side mounted camera provides accurate measurements of pantograph uplift forces exerting on the contact wire.

Cleaning and washing facilities

These facilities are often found located within light maintenance depots, further information can be found in <u>Section 7.3.6</u>.

7.3.8 Maritime and Inland Port Facilities

These may be provided by the operators of rail connected facilities, but are not provided directly by us.

Further information about maritime and inland port facilities can be found on the <u>Rail Facilities portal</u>, or where provided as part of our <u>service provider information list</u>. The Rail Facilities portal also provides quick

access to information on all kinds of rail facilities, in particular rail freight facilities.

7.3.9 Relief Facilities

The term 'relief facilities' is undefined within national and European legislation; however, it is defined within the <u>RNE's Glossary</u> as "areas, equipment's and infrastructure to be used to overcome a disruption". Following any disruptive incident, we will endeavour to operate the network in accordance with best practice to facilitate the carriage of passengers and goods across our network.

7.3.10 Refuelling Facilities

Refuelling facilities may be provided by the operators of light maintenance depots (see <u>Section 7.3.6</u>), but we do not provide these directly.

Glossary		ERA	European Union Agency for Railways	
		ESG	Event Steering Group	
Abbreviations		FOC	Freight train operating company	
AB	Allocation Bodies	FTLB	Freight Train Load Book	
CAS	Certification Scheme for Telecommunications	GB	Great Britain	
CCG	Common Components Group – responsible for delivery of the common messaging interface and the common	GPRS	General Packer Radio Services	
reference data system required for TAF NTSN, which should also be used for TAP NTSN		GSM-R	Global System for Mobile Communications – Railway	
		GTR	Govia Thameslink Railway	
CoE	Calendar of Events	HST	High Speed Train	
C-OSS One Stop Shop operated by the North Sea Mediterra		ICC	Infrastructure Control Centre	
	Rail Freight Corridor	IM	Infrastructure Manager	
COTS	Commercial Off The Shelf	LMD	Light Maintenance Depot	
CRE	Customer Relationship Executive	LNER	London North Eastern Railway	
CSM RA	Common Safety Method Risk evaluation and Assessment	LTPP	Long Term Planning Process	
DfT	Department for Transport	MU	Multiple Unit	
DEMU	Diesel Electric Multiple Unit	NESA	National Electronic Sectional Appendix	
DMU	Diesel Multiple Unit	NTSN	National Technical Specification Notice	
ECM	Entities in Charge of Maintenance	NVR	National Vehicle Register	
EIM	European Rail Infrastructure Managers	OLE	Overhead Line Equipment	
ELMTREE	Exceptional Load Management Tool and Routing Enquiry	ORR	Office of Rail and Road	
	Engine			
EMU	Electric Multiple Unit	OSS	One Stop Shop	

Enhanced Permissible Speed

EPS

PAP Pre-arranged path for international freight in the **TCAG** Timetable Change Assurance Group European rail network created by a European rail freight TfL Transport for London corridor and allocated by them **TfW** Transport for Wales **RDG** Rail Delivery Group TM Traffic Management **REP** Rail Environment Policy TOC Train (usually, passenger train) Operating Company **RFC** Rail Freight Corridor **TOPS Total Operations Processing System RGS** Railway Group Standards **TPE** TransPennine Express **RINF** Register of Infrastructure **TPH** Trains per hour ROC Railway Operational Code TRUST Train Running System on TOPS **ROGS** The Railways and Other Guided Transport Systems TS Transport Scotland (Safety) Regulations 2006 and The Railways and Other Guided Transport Systems (Safety) (Amendment) Ultra High Frequency UHF Regulations 2013 UIC International Union of Railways RailNetEurope **RNE RSSB** Rail Safety and Standards Board Limited RU Railway Undertaking **RUS** Route Utilisation Strategy **SCADA** Supervisory Control And Data Acquisition **SNRP** Statement of National Regulatory Provisions SP Sprinter Diesel Multiple Units **TAC** Track Access Contract Telematics Applications Freight – National Technical TAF NTSN **Specification Notices**

Telematics Applications Passenger – National Technical

Specification Notices

TAP NTSN

Terms explained

Access and Management Regulations

The Railways (Access, Management and Licensing of Railway Undertakings) Regulations 2016 ("Access, Management and Licensing Regulations") which implement Directive 2012/34/ EU of the European Parliament and of the Council of 21 November 2012 establishing a single European railway area (the Recast).

The Access, Management and Licensing Regulations were amended by The Railways (Access, Management and Licensing of Railway Undertakings) (Amendment) Regulations 2019).

Access Dispute Resolution Rules

Rules appended to the Network Code, which govern the handling of disputes arising from matters covered by the Code.

Concession Agreement

An agreement between the government or other authority and a party which offers to provide specified railway passenger services for a period, the terms of which may provide for the government to pay a subsidy or receive a premium for those services. For the purpose of this document the terms concession agreement and franchise agreement have the same meaning.

Connected Facility

A facility connected to the main railway network, such as a terminal, port or light maintenance depot.

Connected Facilities Details

Details of where further information may be obtained about the nature of access to, and supply of services in, terminals, ports and service facilities to which access may be obtained under Regulations 6 and 7 of the Access and Management Regulations.

DfT

Department for Transport, a government department providing leadership across transport sectors to achieve its objectives, working with regional, local and private sector partners to deliver many of the services running within, and from, England and Wales.

Depot access contract

A contract for rights of access to a light maintenance depot, including provision of services. Also referred to as a depot access agreement.

Engineering Access Statement

Rules regulating the arrangements for access to the various parts of the main rail network when affected by inspection, maintenance, renewal and other works. Please see further at <u>Section 4.5.1</u>. The current Engineering Access Statement is available Network Rail's <u>our website</u>.

Facility owner

The owner of an interest in a network, station or light maintenance depot, such that their permission is needed if anyone else is to enjoy access to that facility in order to use it for, or in connection with, the operation of trains.

Firm rights

Rights of access to the main rail network granted by track access contracts which are not contingent, other than in relation to the applicable Engineering Access Statement or Timetable Planning Rules.

The expression is also used to refer to Network Rail's own rights to carry out maintenance, renewal and enhancements to the main rail network under the Engineering Access Statement or Timetable Planning Rules.

Framework Agreement

This expression is used in EU Directives as referring to a general agreement setting out rights and obligations in relation to infrastructure capacity to be allocated and the related charges for a period longer than one working timetable period. In the GB context, this refers to a track access contract between an IM and access beneficiary.

Franchise agreement

An agreement between a government and a party which offers to provide specified railway passenger services for a period, the terms of which may provide for the government to pay a subsidy or receive a premium for those services. For the purpose of this document franchise agreement and concession agreement are the same.

Franchised passenger railway undertaking

A RU which operates passenger services in support of a franchise agreement.

Infrastructure Manager

The Infrastructure Manager is the body that is responsible for operating, maintaining, renewing and developing railway infrastructure.

Interoperability

Interoperability supports rail safety and technical compatibility between trains and infrastructure, and it also enables the railway to compete more effectively with other forms of transport. It establishes common standards and assessment processes for new, upgraded or renewed rail vehicles, infrastructure and components. The Railway Interoperability

Regulation 2011 (RIR 2011) applies to; The UK Rail System, subsystems located operated or intended to be operated in the UK and interoperability constituents (ICs).

Licensing Regulations

The Railway (Licensing of Railway Undertakings) Regulations 2005 (as amended), is currently the statutory instrument requiring most people who want to operate passenger trains or freight trains in GB to hold an appropriate passenger licence or freight licence, and associated Statement of National Regulatory Provisions (SNRP)

Light maintenance depot

A place at which services are provided where locomotives or other rolling stock are refuelled, cleaned externally or receive regular servicing as defined in the Railways Act 1993.

Main rail network

The rail network in Great Britain (including the Isle of Wight), of which Network Rail is the IM and/or owner (as defined by the Access and Management Regulations). Ownership may in this context include a lease or other property right. Where Network Rail owns network (e.g. in a freight depot), but has leased it to another party (e.g. a FOC) that manages that network, then the other party will be the operator and the facility is no longer part of the main rail network (for the purpose of this Network Statement).

Minimum access package

Access to facilities and a set of services for international or domestic traffic (Access, Management and Licensing of Railway Undertakings Regulations 2016) confers rights and which include the handling of requests for infrastructure capacity and the right to use such capacity as is granted. These are further described in <u>Section 5.3</u>.

Notified National Technical Rules

The standards, technical specifications, and technical rules in use in the UK which have been notified by the Secretary of State to the Commission pursuant to article 17(3) of the Directive or Article 16(3) of the High-Speed Directive or Article 16(3) of the Conventional Directive, including any variations from time to time notified.

National Vehicle Register

The National Vehicle Register is a database of vehicles authorised to be placed into service in Great Britain under the Railways (Interoperability) Regulations 2006 and superseded by the Railways (Interoperability) Regulations 2011. The Secretary of State has appointed Network Rail Infrastructure Limited as the Registration Entity, which is responsible for maintaining the NVR. This duty is discharged through the Rolling Stock Library (RSL).

Network Code

A common set of rules that applies to all parties that have a track access contract with Network Rail. <u>The Network Code</u> is incorporated into, and therefore forms part of, each such bilateral contract.

Network Rail (Company) Standards

'Network Rail Standards' is the generic term for documents that specify requirements and provide guidance directed towards securing safe and efficient operation of the rail infrastructure. They support the overall company assurance system by specifying how Network Rail controls its principal health and safety risks, and how the organisation complies with National Technical Specification Notices (NTSNs), domestic legislation, and Railway Industry Standards.

Possession (or restriction of use including temporary speed restrictions)

Non-availability of the network for full use by trains for a period when reserved for the carrying out of works.

Passengers' Charter

A commitment by a franchised passenger RU to its passengers as regards what passengers may expect, including as to standards of service, compensation, and contact arrangements.

Principal Timetable

The working timetable that is established for the year beginning on the Sunday immediately after the second Saturday in December.

Railway Group Standards

Published by RSSB, <u>Railway Group Standards</u> are technical and operational documents whose objective is to provide a framework for the safe management of risk in areas of interface / co-operation between different duty holders. Compliance is mandatory by RSSB and the members of RSSB subject to any approved non-compliance arrangements that are in place. RSSB has integrated the management of RGS with the work that it does to support the industry on interoperability standards.

Railway undertaking

Any public or private undertaking licensed according to the licensing of Railway Undertakings Regulations 2005, the principal business of which is to provide services for the transport of goods and/or passengers by rail, often described as a RU.

Railway Safety and Standards Board

The Rail Safety and Standards Board was established in April 2003 with its primary objective to facilitate the railway industry's work to achieve continuous improvement in the health and safety performance of the railways in Great Britain, and thus to facilitate the reduction of risk to passengers, employees, and the affected public.

Register of Infrastructure

Data specified by the Register of Infrastructure (Commission Implementing Regulation (EU) 2019/777) can be used for planning purposes in designing new trains and developing routes before the start of operation. Each Infrastructure Owner is responsible for making the information as specified by the RINF data specification available within 28 days of a request by an applicant for authorisation under the RIR2011 or an approved body.

Sectional Appendix

A listing, according to line of route, of various physical and operational attributes of the main rail network, including information as to permanent speed restrictions, position of signal boxes and stations, and with other information relevant to the operation of trains. Please see further information at Section 2.3.

Service provider

A party that will supply and charge for, where appropriate, services used by a RU in the operation of trains. The service provider is generally, but not always, the facility owner (for example, of a station or depot).

Station

A place where trains stop, or where loading and unloading occurs, and where assistance may be available as defined in the Railways Act 1993.

Station access contract

A contract for rights of access to a station on a rail network. Also referred to as a station access agreement.

Subsidiary Timetable

The adjustment of the Principal Timetable that is established at midnight on the third Saturday in May during the currency of the Principal Timetable.

Timetable Change Assurance Group

A national group composed of competent individuals who carry out assurance checks on the outputs from TCRAGs.

Timetable Change Risk Assessment Group

A Route based group composed of competent individuals to assess the effects of proposed significant timetable changes and determine any mitigation measures to be applied.

Timetable Planning Rules

Rules regulating standard timings and other matters enabling trains to be scheduled into the working timetable on the main rail network. Please see section 2.4 for more information.

Total Operations Processing System

TOPS is a database that contains details of vehicles and schedules (for loco hauled vehicles only). Non-loco hauled schedules are located in TRUST (e.g. EMU, DMU and DEMU).

Track access contract

A contract for access to the track, including an option to have such rights of access. Also referred to as a track access agreement.

Traffic Management

This is a system under development that will allow larger areas of Network Rail's network to be controlled from fewer locations and help increase capacity and improve reliability.

Train path

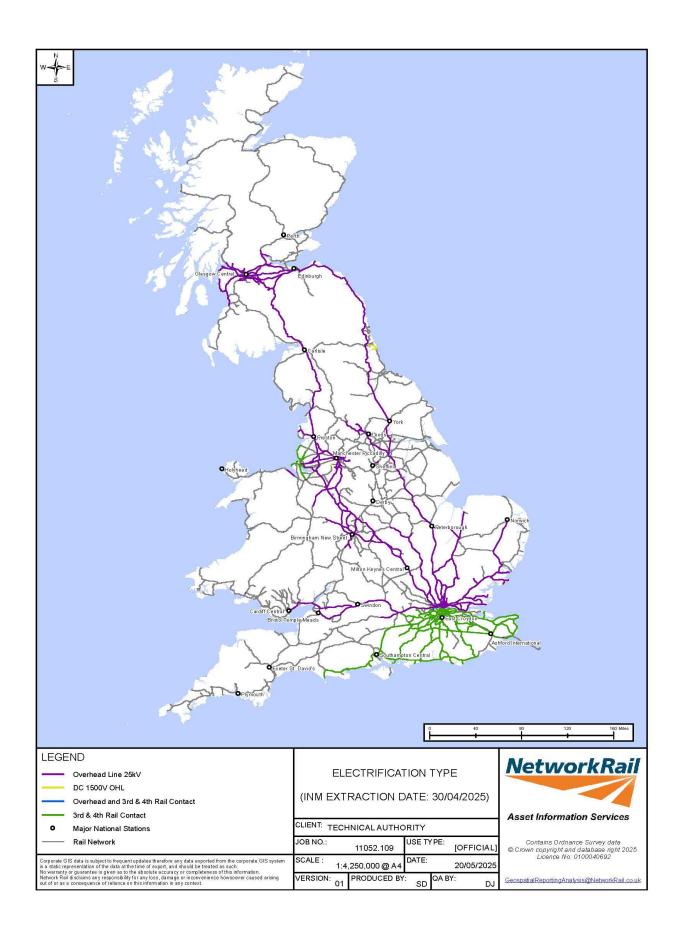
This expression is used in EU Directives to refer to the infrastructure capacity needed to run a train between two places over a given time period; and in the context of this Network Statement is treated as the provision of the capacity in the timetable to enable train movement on the rail network.

Train slot

A right contained in a track access contract to a train movement between two places, together with certain other characteristics, which may include times at those places, routing, calling pattern, traction type, and exceptional characteristics by specific agreement. These characteristics must be reflected when processed by Network Rail in production of the working timetable (using the rules set out in the Network Code).

Transport Scotland

Transport Scotland is an executive agency of the Scottish Government, directly accountable to the Scottish Ministers. <u>Transport Scotland</u> seeks to deliver a safe, efficient, cost-effective, and sustainable transport system for the benefit of the people of Scotland.


TRUST

A computer system, part of the TOPS suite of systems, which records details of train running as compared with schedule, together with causes of delays.

Working timetable

The timetable used for working purposes, as further described <u>in Section</u> 4.5.1.

Annex 1 – Extent of Electrification across the Network

Annex 2 - Schedule of timetabling process

	2027 Timetable Subsidiary Change (May 2027)	
Timetable Development Dates		
D73 - Formal Notification of Process Dates	N/A	
Revision of Timetable Planning Rules		
D64 – Start of NR Consultation of Proposed Changes to the Timetable		
Planning Rules	20/02/2026	
D64 - TCRAG - Start of Train Plan Hazard Identification (TP-HAZID)	20/02/2026	
D56 - TCRAG End of Train Plan Hazard Identification	17/04/2026	
D55 - TCRAG - Start of Train Plan Assessment/Mitigation	24/04/2026	
Rules to Planning Publications (Timetable Planning Rules)		
D53 – Publish 'Draft' Timetable Planning Rules for consultation	08/05/2026	
D49 – Operator Responses to Draft Timetable Planning Rules	05/06/2026	
Rules to Planning Publications (Timetable Planning Rules)		
D49 to D46 – NR to review Operator Responses (Timetable Planning Rules)	26/06/2026	
D46 – Publish 'Final' Timetable Planning Rules	26/06/2026	
D43 – End of Appeal Period for 'Final' Timetable Planning Rules	17/07/2026	
Revision of the Engineering Access Statement (EAS Section 4)		
D64 – Start of NR Consultation of Proposed Changes to EAS Section 4	20/02/2026	
D60 – End of NR consultation of proposed changes to EAS Section 4	20/03/2026	
Rules to Planning Publications (EAS Section 4)		
D59 – Publish 'Draft' EAS Section 4	27/03/2026	
D54 – Operator Responses to 'Draft' EAS Section 4	01/05/2026	
D54 to D44 – NR review Operator Responses (EAS - Section 4)	10/07/2026	
Rules to Planning Publications (EAS Section 4)		
D44 – Publish 'Final' EAS Section 4	10/07/2026	
D41 – End of Appeal Period 'Final' EAS Section 4	31/07/2026	

Initial Consultation Period			
D64 – Publication of draft Calendar of Events	20/02/2026		
D45 – Publication of Strategic Capacity Statement	03/07/2026		
D55 – Notification by TT Participants of major TT changes	24/04/2026		
D55 – Start of Initial Consultation Period	24/04/2026		
D54 – Publication of Final Calendar of Events	01/05/2026		
D45 – NR to provide copy of 'Prior Working Timetable'	03/07/2026		
D48 – Notification of Provisional International Paths	12/06/2026		
D40 – Priority Date	07/08/2026		

Timetable Preparation Period		
D40 – Start of Timetable Preparation Period	07/08/2026	
D38 - TCRAG - End of Train Plan Assessment/Mitigation	21/08/2026	
D37 - TCRAG - Start of Train Plan Risk Evaluation - (TP-REP)	28/08/2026	
D33 - TCRAG - End of Train Plan Risk Evaluation - (TP-REP)	25/09/2026	
D32 - TCRAG - Start of Timetable Change Assurance Panel (TP-RAP)	02/10/2026	
D30 - TCRAG - End of Timetable Change Assurance Panel (TP-RAP)	16/10/2026	
D26 – NR Publish New Working TT	13/11/2026	
New WTT and associated system files available to ATOC	13/11/2026	
D24 - Operator responses to New WTT	27/11/2026	
D22 – End of Appeal Period 'New Working Timetable	11/12/2026	
D19 - Timetable Briefing process complete	01/01/2027	
D19 - CIF Electronic Data available	01/01/2027	
D14 - CIF Electronic Data available	05/02/2027	
D9 - Timetable Extract taken for NRT Edit	12/03/2027	
D8 - Corresponding Day Timetable Dates Proposed to Operators	19/03/2027	
D4 - NRT Data sent to publishers	16/04/2027	
Timetable Commencement Date	16/05/2027	
Timetable End Date	11/12/2027	

Revision of The Advanced Register of Possessions (Sections 5 & 7 EAS)		
EAS	Financial Year 1st Half	Financial Year 2 nd Half
2026 - 2027	05/04/2026 – 03/10/2026	04/10/2026 - 03/04/2027
F-64 – Start of NR Consultation of Proposed Changes to the ARP	10/01/2025	11/07/2025
F-60 - End of NR consultation of proposed changes to the ARP	07/02/2025	08/08/205
F-59 - Publish draft APR (V1/V3)	14/02/2025	15/08/2025
F-54 - Operator Responses to draft ARP	21/03/2025	19/09/2025
F-54 to 46 - NR review Operator Responses to draft ARP		
F-46 - Publish revised ARP (V2/V4)	16/05/2025	14/11/2025
F-43 - End of Appeal Period for revised ARP	09/06/2025	05/12/2025
2027 - 2028	04/04/2027 – 02/10/2027	03/10/2027 – 01/04/2028
F-64 – Start of NR Consultation of Proposed Changes to the ARP	09/01/2026	10/07/2026
F-60 - End of NR consultation of proposed changes to the ARP	06/02/2026	07/08/2026
F-59 - Publish draft APR (V1/V3)	13/02/2026	14/08/2026
F-54 - Operator Responses to draft ARP	20/03/2026	18/09/2026
F-54 to 46 - NR review Operator Responses to draft ARP		
F-46 - Publish revised ARP (V2/V4)	15/05/2026	13/11/2026
F-43 - End of Appeal Period for revised ARP	08/06/2026	04/12/2026

Annex 3 - Route Capability Gradients

